Kruskal’s Algorithm

Input: A weighted undirected graph $G = (V, E)$ with weight function $f : E \rightarrow \mathbb{R}^+$

Output: A minimal spanning tree T for G.

Method:

\[T = \emptyset \ ; \]
\[S = \emptyset \ ; \]
Construct a priority queue Q of all edges in E ;

for each vertex $v \in V$ do add $\{v\}$ to S.

while $|S| > 1$ do
 choose edge (v, w) from Q of lowest cost ;
 delete (v, w) from Q ;
 if $(v$ and w are in different sets W_1 and W_2 in S) then
 Replace W_1 and W_2 in S by $W_1 \cup W_2$;
 Add (v, w) to T ;
 end if
end while