1. Analysis of algorithms, asymptotic complexity measures

2. Algorithm design strategies: common ideas used in a variety of algorithms
 (a) Divide and conquer / Balancing
 (b) Backtracking
 (c) Greedy algorithms
 (d) Dynamic Programming
 (e) Monte Carlo & Las Vegas methods

3. Commonly used algorithms for important problems.
 (a) Matrix multiplication (Strassen’s algorithm)
 (b) Graph Algorithms, depth-first search, depth-first spanning tree, classifying edges (tree, back, cross), strongly connected components, topological sort, minimal spanning tree, single source shortest paths, all-points shortest path.
 (c) Union-Find problem and application to Kruskal’s Algorithm
 (d) RSA encryption
 (e) The Fast Fourier Transform and the convolution theorem
 i. Application to image processing
 (f) LUP-decomposition and implications for matrix operations
 (g) The max-flow / min-cut problem, solution by linear programming, and Ford-Fulkerson algorithm (if time allows).
 (h) Pattern matching: Knuth-Morris-Pratt
 (i) Parsing algorithms (LL1 predictive parsing)
 (j) Numerical algorithms: e.g., Multivariate Newton’s method (if time)
 (k) Fast (large) integer multiplication (if time allows)
 (l) Clustering (e.g., K-means, if time allows)

4. The Classes \mathcal{P} and \mathcal{NP}, \mathcal{NP}-complete problems
 (a) Cook-Levin Theorem
 (b) Polynomial time mapping reduction
 (c) Survey of some well known \mathcal{NP}-complete problems
Expectations:

1. Class participation.
2. Communicate if things get complicated.
3. Your best effort.

Grading:
Two exams (65%), programming assignments (10 %) and take home problem sets (25%). Programming assignment(s) must be submitted ready to compile and run under Linux or Solaris.

Disability Notice:
If you have a disability that may require an accommodation for taking this course, then please contact the Learning Assistance Center (758-5929) within the first two weeks of the semester.

Pandemic Planning Notice:
The University has requested that faculty collect personal contact information as part of emergency planning and preparation. The information you provide is strictly confidential.