
CSC 721 Algorithms Fall 2017

Recursive Radix-2 FFT

An nth principal root of unity ω satisfies:

1. ωn = 1

2. ω 6= 1

3. Two equivalent properties that characterize principality of the root:

(a) ω0, ω1, ω2, ..., ωn−1 are all distinct

(b) For every 1 ≤ p < n,
∑n−1

j=0 ωjp = 0

The most often used nth principal root of unity is in the complex plane:

ω = e−2πı/n

We define the n × n discrete Fourier matrix as follows:

Fi,j = ωi·j

Let a ∈ Cn be an n × 1 column vector over the complex numbers. The n × n discrete Fourier
transform of a is the matrix-vector multiply:

b = Fa

There is a natural connection between the discrete Fourier transform and polynomials. Observe:

bi =
n−1
∑

j=0

ωi·jaj =
n−1
∑

j=0

(

ωi
)j

aj

We can define a polynomial whose coefficients are the entries in the vector a. Let,

p(x) = a0 + a1x + a2x
2 + a3x

3 + ... + an−1x
n−1

The entries in the transformed vector b can be then written:

bi = p(ωi)

We derive a radix-2 recursive divide and conquer algorithm by defining two new polynomials:

peven(x) = a0 + a2x + a4x
2 + ... + an−2x

n/2−1

podd(x) = a1 + a3x + a5x
2 + ... + an−1x

n/2−1

Observe that for any x:
p(x) = peven(x

2) + x podd(x
2) (1)

Equation (1) suggests a divide and conquer approach since peven(x) and podd(x) each have only

half as many coefficients as p(x). However, there are special properties of powers of an nth principal
root of unity that make our task even more computationally efficient.

1

If we list all the values of x for which we want to evaluate the polynomal p(x) and compare
them to x2, we have:

x ω0 ω1 ω2 ... ωn/2−1 ωn/2 ωn/2+1 ... ωn−1

x2 ω0 ω2 ω4 ... ωn−2 ωn ωn+2 ... ω2n−2

x2 ω0 ω2 ω4 ... ωn−2 = ω0 = ω2 ... = ωn−2

We see that there are only n/2 distinct values of x2 because ωn = 1 = ω0. Therefore, we can
reduce the problem of evaluating a polynomial with n coefficients at n distinct point to the sub-
problems of evaluating two polynomials, each with n/2 coefficients, at n/2 distinct points. This
yields the following recursive algorithm.

// Assume n is a power of 2.
// Assume omega is a global array of constants containing:
// [ω0, ω1, ..., ωn−1]
// Input:
// a[] – array of input values of length n
// m – supplemental variable for indexing Υ
// Output:
// b[] – output array, b = Fa
procedure fft(array a[], integer n, integer m ; array b[])
{

array evens ; array odds ; // Local arrays.

if (n == 1) {
b[0] = a[0] ;

}
else {

f([a0, a2, ..., an−2], n/2, 2*m ; evens) ;
f([a1, a3, ..., an−1], n/2, 2*m ; odds) ;
for (j = 0 ; j < n/2 ; j++) {

temp = omega[m * j] * odds[j] ;
b[j] = evens[j] + temp ;
b[j+n/2] = evens[j] - temp ;

}
}

2

