Recursive Radix-2 FFT

An n^{th} principal root of unity ω satisfies:

- 1. $\omega^n = 1$
- $2. \ \omega \neq 1$
- 3. Two equivalent properties that characterize principality of the root:
 - (a) $\omega^0, \omega^1, \omega^2, ..., \omega^{n-1}$ are all distinct
 - (b) For every $1 \le p < n$, $\sum_{j=0}^{n-1} \omega^{jp} = 0$

The most often used n^{th} principal root of unity is in the complex plane:

$$\omega = e^{-2\pi i/n}$$

We define the $n \times n$ discrete Fourier matrix as follows:

$$F_{i,j} = \omega^{i \cdot j}$$

Let $a \in \mathcal{C}^n$ be an $n \times 1$ column vector over the complex numbers. The $n \times n$ discrete Fourier transform of a is the matrix-vector multiply:

$$b = Fa$$

There is a natural connection between the discrete Fourier transform and polynomials. Observe:

$$b_i = \sum_{j=0}^{n-1} \omega^{i \cdot j} a_j = \sum_{j=0}^{n-1} \left(\omega^i\right)^j a_j$$

We can define a polynomial whose coefficients are the entries in the vector a. Let,

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{n-1} x^{n-1}$$

The entries in the transformed vector b can be then written:

$$b_i = p(\omega^i)$$

We derive a radix-2 recursive divide and conquer algorithm by defining two new polynomials:

$$p_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-2} x^{n/2 - 1}$$
$$p_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-1} x^{n/2 - 1}$$

Observe that for any x:

$$p(x) = p_{\text{even}}(x^2) + x p_{\text{odd}}(x^2)$$
 (1)

Equation (1) suggests a divide and conquer approach since $p_{\text{even}}(x)$ and $p_{\text{odd}}(x)$ each have only half as many coefficients as p(x). However, there are special properties of powers of an n^{th} principal root of unity that make our task even more computationally efficient.

If we list all the values of x for which we want to evaluate the polynomal p(x) and compare them to x^2 , we have:

x	ω^0	ω^1	ω^2		$\omega^{n/2-1}$	$\omega^{n/2}$	$\omega^{n/2+1}$	 ω^{n-1}
$\mathbf{x^2}$	ω^0	ω^2	ω^4	:	ω^{n-2}	ω^n	ω^{n+2}	 ω^{2n-2}
\mathbf{x}^{2}	ω^0	ω^2	ω^4		ω^{n-2}	$=\omega^0$	$=\omega^2$	 $=\omega^{n-2}$

We see that there are only n/2 distinct values of x^2 because $\omega^n = 1 = \omega^0$. Therefore, we can reduce the problem of evaluating a polynomial with n coefficients at n distinct point to the subproblems of evaluating two polynomials, each with n/2 coefficients, at n/2 distinct points. This yields the following recursive algorithm.

```
// Assume n is a power of 2.
// Assume omega is a global array of constants containing:
// [\omega^0, \omega^1, ..., \omega^{n-1}]
// Input:
// a[] – array of input values of length n
// m – supplemental variable for indexing \Upsilon
// Output:
// b[] – output array, b = Fa
procedure fft( array a[], integer n, integer m; array b[] )
{
   array evens; array odds; // Local arrays.
   if (n == 1)
       b[0] = a[0];
   }
   else {
       f([a_0, a_2, ..., a_{n-2}], n/2, 2*m; evens);
       f( [ a_1, a_3, ..., a_{n-1}], n/2, 2*m; odds );
       for (j = 0; j < n/2; j++)
           temp = omega[m * j] * odds[j];
           b[j] = evens[j] + temp;
           b[j+n/2] = evens[j] - temp;
       }
   }
```