
CSC 721 Algorithms Fall 2015

The FFT and the Convolution Theorem

Given two vectors of length n:

a = [ a0, a1, a2, ..., an−1 ]
T

b = [ b0, b1, b2, ..., bn−1 ]
T

we define ai = bi = 0 whenever i < 0 or i ≥ n. I.e., we extend the support of ai and bi to all
integers i, with the convention that the vectors are zero outside the index range [ 0, 1, 2, ..., n − 1 ].

We define the convolution of a and b denoted by c = a⊛b as a vector of length 2n as follows:

ci =

n−1
∑

j=0

aj bi−j (1)

where 0 ≤ i < 2n. Observe that by this definition1 it will always be the case that c2n−1 = 0.

Let â and b̂ denote the vectors a and b padded with zeros to make them length 2n. I.e.,

â = [ a0, a1, a2, ..., an−1, 0, 0, ..., 0 ]
T

b̂ = [ b0, b1, b2, ..., bn−1, 0, 0, ..., 0 ]
T

Theorem

a⊛ b = F−1
(

F â ◦ F b̂

)

where the operation “◦” denotes component-wise multiplication and F denotes the 2n×2n discrete
Fourier transform.

Proof

It suffices to show:
F ( a⊛ b ) =

(

F â ◦ F b̂

)

(2)

Let
F â =

[

a′0, a
′

1, a
′

2, ..., a
′

2n−1

]

F b̂ =
[

b′0, b
′

1, b
′

2, ..., b
′

2n−1

]

denote the Fourier transforms of â and b̂ respectively. By definition:

a′i =
∑2n−1

j=0 ωij
âj

b′i =
∑2n−1

k=0 ωik
b̂k

1We might define define a⊛ b to be a sequence of length 2n− 1. In our discussion of the convolution theorem, it

will be convenient to define the length of the result c to be equal to twice the length of the input vectors a and b.
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Multiplying, we have

a′i b
′

i =





2n−1
∑

j=0

ωij
âj





(

2n−1
∑

k=0

ωik
b̂k

)

(3)

=

2n−1
∑

j=0

2n−1
∑

k=0

ωi(j+k)
âj b̂k (4)

=

n−1
∑

j=0

n−1
∑

k=0

ωi(j+k) aj bk (5)

Equation (5) follows from equation (4) because âj = 0 whenever j ≥ n and b̂k = 0 whenever k ≥ n.

Equation (5) is our final expression for the right hand side of equation (2). We now consider
the left hand side of equation (2). The theorem will be proven when we show that the two sides
are equal.

Recall c = a⊛ b and let
Fc =

[

c′0, c
′

1, c
′

2, ..., c
′

2n−1

]

denote the Fourier transform of c. By definition of the Fourier transform we have:

c′i =

2n−1
∑

ℓ=0

ωiℓ
cℓ (6)

Applying definition (1) to ci in equation (6), we have:

c′i =

2n−1
∑

ℓ=0

ωiℓ

n−1
∑

j=0

aj bℓ−j (7)

Distributing, and exchanging the order of summation:

c′i =
n−1
∑

j=0

2n−1
∑

ℓ=0

ωiℓ
aj bℓ−j (8)

We now perform a change-of-variable substitution in the inner summation in equation (8). Let
k = ℓ− j. To make the substitution, we can replace the expression ℓ− j by k, and we can replace
the variable ℓ by k + j. We also need to adjust the limits of summation since k is the new index
variable in the summation. If ℓ = 0, then k = −j. If ℓ = 2n− 1, then k = 2n− 1− j. Therefore:

c′i =

n−1
∑

j=0

2n−1−j
∑

k=−j

ωi(j+k)
aj bk (9)

Notice when we finish our change-of-variable substitution, the variable ℓ is no longer present in
equation (9).
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In equation (9), notice that for any negative values of k, each term will have a factor of zero,
since bk = 0 whenever k < 0. Therefore we can adjust the lower limit of the summation and write:

c′i =

n−1
∑

j=0

2n−1−j
∑

k=0

ωi(j+k)
aj bk (10)

We are almost done. We now need to lower the upper limit of the inner summation to n − 1,
but we need to prove that by doing so, we are not changing the value of the sum. We accomplish
this by considering the range of j and doing some simple math.

From the limits of the outer summation, we know:

0 ≤ j ≤ n− 1 . (11)

Multiplying inequality (11) by -1, mindful of the properties of inequalities, we have:

−n+ 1 ≤ −j ≤ 0 . (12)

Adding 2n− 1 to each expression in inequality (12) we obtain:

2n− 1− n+ 1 ≤ 2n− 1− j ≤ 2n− 1

n ≤ 2n− 1− j ≤ 2n− 1
(13)

Inequality (13) shows that the upper limit in the inner summation in equation (10) is always
greater than n − 1. However, bk = 0 for all values of k greater than n − 1. Therefore, we can
safely lower the upper bound on the inner summation of equation (10) to n− 1, since all the newly
excluded terms are zero. We obtain:

c′i =

n−1
∑

j=0

n−1
∑

k=0

ωi(j+k)
aj bk (14)

The right hand side of equation (14) exactly matches the right hand side of equation (5).
Therefore we have:

c′i = a′i b
′

i (15)

and the theorem is proven.
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