1. Convert the following DFA to a regular expression.

2. Let

\[L = \{ s \mid s \text{ is a string of base 2 digits representing a number that is divisible by } 3 \} \]

Prove that \(L \) is regular.

3. Prove that the class of regular languages is closed under set subtraction. I.e., if \(R_1 \) and \(R_2 \) are regular languages, then \(R_1 - R_2 \) is regular.

Hint: See Theorem 1.25 in Sipser.

4. For any string \(w = w_1w_2...w_n \), the reverse of \(w \), written \(w^R \) is the string

\[w^R = w_nw_{n-1}...w_1 \]

For any language \(A \), let \(A^R = \{ w^R \mid w \in A \} \). Show that if \(A \) is regular, then \(A^R \) is also regular.

5. Let

\[L = \{ a^n \mid n \text{ is a prime number} \} \]

Use the pumping lemma to prove the \(L \) is not regular.