Pseudocode for parallel Floyd-Warshall’s algorithm is given below. Figure 1 illustrates the data communication pattern.

Input: A weighted graph $G = (V, E)$ with weight function $f : V \times V \rightarrow \mathbb{R}^+ \cup \{+\infty\}$.

Let n denote the number of vertices in V. Number the vertices $V = \{v_1, v_2, v_3, ..., v_n\}$.

Output: An $n \times n$ matrix C such that $C_{i,j}$ is the cost of the shortest path from v_i to v_j.

Key Idea: Define a matrix $C_{i,j}^{(k)}$ as the cost of the shortest (restricted) path from v_i to v_j that goes through intermediate vertices numbered no higher than k.

Method:

Check that the number of processes p is a perfect square.

Process rank 0 reads the $n \times n$ input matrix; check that n is divisible by \sqrt{p}.

Block-distribute each $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ part of the input matrix.

0. Initialize the $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ block portion of the cost matrix $C^{(0)}$.

// Let $P_{i,j}$ denote the processor in block-row i and block column j

for $k = 1$ to n do

\{

1. each $P_{i,j}$ that has a segment of the k^{th} row of $C^{(k-1)}$ broadcasts it to $P_{*,j}$

2. each $P_{i,j}$ that has a segment of the k^{th} column of $C^{(k-1)}$ broadcasts it to $P_{i,*}$

3. each process $P_{i,j}$ computes its $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ part of $C^{(k)}$

\}

4. Process rank 0 collects the $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ parts of $C^{(n)}$ and writes $C^{(n)}$ to a file.

Parallel Time:

We begin our analysis assuming the cost matrix $C^{(0)}$ is block-distributed and properly initialized using the values of the weight function f, i.e., we omit the time taken by step 0. Also, we omit the time taken by step 4 in our analysis here. Intuitively, we can think of the parallel time as the sum of the computation time and the communication time. Let n denote the size of the problem (i.e. $n = |V|$) and let p denote the number of processors. We have:

$T_p(n, p) = \text{parallel computation time} + \text{communication time}$

We derive the parallel computation time by counting the number of update operations. Observe that the updates are done concurrently for each block size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$. The factors of our expression for parallel computation time are illustrated in the following diagram:

```
\[ \left( \frac{n}{\sqrt{p}} \right)^2 = \frac{n^3}{p} \]
```

n iterations

There are $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ entries in each block.
Recall our cost model for broadcasting a message size m among q processors (in a hyper-cube) is given by:

$$T_{\text{Broadcast}}(q) = (t_c + t_w m) \log_2(q)$$

For the communication time in parallel Floyd-Warshall, we consider the two broadcast operations, Refer to Figure 1 and recall that each block-row and each block-column contains \sqrt{p} blocks, therefore the number of processors participating in each row-broadcast and each column broadcast is \sqrt{p}. In each broadcast, a row-segment (or column-segment) is sent. There are $\frac{n}{\sqrt{p}}$ data items in each segment. Distributing $\frac{n}{\sqrt{p}}$ data items in one broadcast is more efficient than $\frac{n}{\sqrt{p}}$ broadcast operations, each sending one data item. Using these observations, we have the following expression for communication time:

$$n \left[2 \left(t_c + t_w \frac{n}{\sqrt{p}} \right) \log_2(\sqrt{p}) \right]$$

Adding the computation and communication time, we have:

$$T_{\text{par}}(n, p) = \frac{n^3}{p} + n \left[2 \left(t_c + t_w \frac{n}{\sqrt{p}} \right) \log_2(\sqrt{p}) \right] \quad (1)$$

Recall for logarithms of any base b we know:

$$\log_b(\sqrt{x}) = \frac{1}{2} \log_b(p)$$
This property allows us to simplify equation (1) and we have:

\[T_{par}(n, p) = \frac{n^3}{p} + n \left(t_c + t_w \frac{n}{\sqrt{p}} \right) \log_2(p) \] \hspace{1cm} (2)

Parallel Cost:

\[pT_{par}(n, p) = n^3 + np \left(t_c + t_w \frac{n}{\sqrt{p}} \right) \log_2(p) \]

\[= n^3 + t_c np \log_2(p) + t_w n^2 \sqrt{p} \log_2(p) \] \hspace{1cm} (3)

Sequential Time:

Counting update operations, we see there are \(n^3 \) such operations. Therefore, we can write our sequential time as:

\[T_s = n^3 \]

Parallel Overhead:

\[T_o(n, p) = pT_{par}(n, p) - T_s(n) \]

\[= n^3 + t_c np \log_2(p) + t_w n^2 \sqrt{p} \log_2(p) - n^3 \] \hspace{1cm} (4)

Iso-efficiency Equation:

\[T_s(n) = K T_o(n, p) \]

\[n^3 = K \left(t_c np \log_2(p) + t_w n^2 \sqrt{p} \log_2(p) \right) \] \hspace{1cm} (5)

When there is more than one term in our expression for the overhead, \(T_o \), we can consider these terms one at a time. To understand the reasoning behind treating the terms of \(T_o \) individually, we recall our simplified expression for efficiency:

\[E = \frac{1}{1 + \frac{T_o(n, p)}{T_s(n)}} \] \hspace{1cm} (6)

Referring to equation (6), we observe that if the overhead strictly dominates the sequential time, then the ratio \(\frac{T_o(n, p)}{T_s(n)} \) diverges to infinity, and the efficiency \(E \) converges to zero.

If the overhead \(T_o(n, p) \) consists of a sum of several terms, the ratio \(\frac{T_o(n, p)}{T_s(n)} \) will diverge to infinity if any one of those terms strictly dominates \(T_s(n) \). Therefore, it suffices to consider the asymptotically dominant term of \(T_o(n, p) \). We re-consider equation (5). Under the very reasonable assumption that \(n >> \sqrt{p} \), the dominant term of \(T_o(n, p) \) is:

\[t_w n^2 \sqrt{p} \log_2(p) \]

We can then consider a modified iso-efficiency equation using only the dominant term. We have:

\[n^3 = K \left(t_w n^2 \sqrt{p} \log_2(p) \right) \] \hspace{1cm} (7)

Cancelling a factor of \(n^2 \) from both sides of equation (7) and combining constants we find:

\[n = \hat{K} \sqrt{p} \log_2(p) \] \hspace{1cm} (8)

While equation (8) can not be simply re-written to express \(p \) as a function of problem size \(n \), it does provide an implicit relationship between \(n \) and \(p \). Equation (8) implicitly describes how much \(p \) should increase when the problem size \(n \) is increased, and still maintain a level of efficiency which does not diminish to zero.

1In the sense of little “o”.

3