A_{TM} is Turing Undecidable

In our study of Turing decidability, we consider Turing machines with states \(q_{\text{accept}} \) and \(q_{\text{reject}} \). We start with the following definition: A language \(L \) is **Turing decidable** if and only if there exists a Turing machine \(M_L \) such that:

- \(M_L \) halts on every input string \(w \) with either “accept” or “reject”.
- \(M_L \) accepts \(w \) if and only if \(w \in L \).

When these two conditions hold, we say \(M_L \) **decides** \(L \). However, there are languages for which no Turing machine exists to decide them. Such languages are called **Turing undecidable**.

Another important concept is **encoding**. We use the notation \(\langle M \rangle \) to denote the encoding of a Turing machine as a string. We now define (and prove) a Turing undecidable language, \(A_{TM} \)

\[
A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts } w \}
\]

Theorem: \(A_{TM} \) is Turing undecidable.

Proof: (by contradiction) Let \(H \) be a Turing machine which decides \(A_{TM} \). We now construct Turing machine \(D \) that uses \(H \) as a subroutine.

\[
D = \text{“On input } \langle M \rangle \text{”} \\
1. \text{Construct the string } \langle M, \langle M \rangle \rangle \\
2. \text{Run } H \text{ on input } \langle M, \langle M \rangle \rangle \\
 a. \text{If } H \text{ accepts, then reject} \\
 b. \text{If } H \text{ rejects, then accept } ^{\dagger}
\]

If \(M \) accepts its own description\(^{\dagger} \) \(\langle M \rangle \) then \(D \) rejects \(\langle M \rangle \). Conversely, if \(M \) does not accept its own description, then \(D \) accepts \(\langle M \rangle \).

We now consider the case when \(D \) is run on its own description \(\langle D \rangle \). By definition of \(D \) we have:

- If \(H \) decides that \(D \) accepts \(\langle D \rangle \) (on line 2), then \(D \) rejects \(\langle D \rangle \) (on line 2a).
- If \(H \) decides that \(D \) rejects \(\langle D \rangle \) (on line 2), then \(D \) accepts \(\langle D \rangle \) (on line 2b).

These two statements above are a contradiction and the theorem is proven.

The language \(A_{TM} \) is known as the “Acceptance Problem”.

\(^{\dagger}\)The C compiler “gcc” is written in C and it is capable of compiling its own source code. The concept of a program that accepts its own description is a little unusual, but certainly possible.
When a Turing machine M runs on input w there are three possible outcomes:

- M halts with “accept”
- M halts with “reject”
- M runs forever

The possibility that a Turing machine (i.e., a computer program) never stops has important implications to computer science theory. Given a machine M and input w, the problem of deciding whether M eventually halts on input w is known as the **Halting Problem**. The Halting Problem is also Turing undecidable.

Turing Recognizability A language L is Turing recognizable if and only if there exists a Turing machine M such that if M is run on an input string $w \in L$, M will accept w in finitely many steps. However, given a string $x \notin L$, M may reject x, but it may also run forever.

Theorem: A_{TM} is Turing recognizable.

Proof: The following Turing machine is a recognizer for A_{TM}.

$$R = \text{"On input } \langle M, w \rangle \text{
1. Run (simulate) } M \text{ on input } w \text{
 a. If } M \text{ accept, then accept }
 b. \text{ If } M \text{ rejects, then reject "}$$

If M accepts w, then $\langle M, w \rangle \in A_{TM}$ and R will accept on line 1a. Therefore, R recognizes A_{TM}

Theorem: If a language L and its complement \overline{L} are both recognizable, then they are both decidable.

Proof: Let R_L and $R_{\overline{L}}$ be recognizers for L and \overline{L} respectively. We construct the following Turing machine:

$$S = \text{"On input } \langle w \rangle \text{
1. For } k = 1, 2, 3, \ldots \text{ do }
 a. \text{ Run } R_L \text{ for } k \text{ steps. If } R_L \text{ accepts, then accept. }
 b. \text{ Run } R_{\overline{L}} \text{ for } k \text{ steps. If } R_{\overline{L}} \text{ accepts, then reject."
}$$

Observe that S decides L. The input string w must belong to either L or \overline{L}, but not both. Eventually either R_L or $R_{\overline{L}}$ must recognize (accept) w. At that point we know whether $w \in L$ or $w \in \overline{L}$.

The Turing machine S decides L but a similar machine can be used to decide \overline{L}. Therefore, both L and \overline{L} are decidable.

Corollary: A_{TM} is not Turing recognizable.