Definitions:

- A **Deterministic Turing machine** is a 7-tuple:
 \[M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \]
 where
 - \(Q \) is a finite set of states
 - \(\Sigma \) is a finite input alphabet
 - \(\Gamma \) is a finite tape alphabet, \(\Sigma \subseteq \Gamma \)
 - \(\delta \) is a transition function, \(\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\} \)
 - \(q_0 \) is the start state
 - \(q_{\text{accept}} \) is the accepting state
 - \(q_{\text{reject}} \) is the rejecting state

 The machine \(M \) is assumed to stop when it enters either \(q_{\text{accept}} \) or \(q_{\text{reject}} \).

- An **Alphabet** is a finite set of symbols.

- A **Language** is a set of strings over an alphabet.

- Turing machines may be studied as “language deciders” or as “function evaluators”. As a “language decider”, a Turing machine is given an input string \(w \) and halts in either \(q_{\text{accept}} \) or \(q_{\text{reject}} \) indicating \(w \in L \) or \(w \notin L \) respectively.

- In the context of language deciders, we use the notation \(L(M) \) to indicate the language accepted by Turing machine \(M \).

- Turing machines may be studied as “function evaluators”. In this case, a Turing machine is defined as:
 \[M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{halt}}) \]
 where \(Q, \Sigma, \Gamma, \delta, q_0 \) are as described above, and \(q_{\text{halt}} \) is the halting state. The machine \(M \) is assumed to stop when it enters \(q_{\text{halt}} \).

 The contents of the tape when the machine is started in \(q_0 \) is considered the function input, \(x \). The contents of the tape when the machine stops in \(q_{\text{halt}} \) is considered the function value, \(f(x) \).

- A function \(f \) is **computable** if and only if there exists a Turing machine which computes \(f(x) \) on input \(x \).

- A **Non-deterministic Turing machine** is a 7-tuple:
 \[N = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \]
 where
 - \(Q \) is a finite set of states
 - \(\Sigma \) is a finite input alphabet
 - \(\Gamma \) is a finite tape alphabet, \(\Sigma \subseteq \Gamma \)
 - \(\delta \) is a transition function, \(\delta : Q \times \Gamma \to 2^{Q \times \Gamma \times \{L, R\}} \). I.e., on each computation step, \(N \) has a set of possible moves which are performed non-deterministically.
 - \(q_0 \) is the start state
- q_{accept} is the accepting state
- q_{reject} is the rejecting state

The machine N is assumed to stop when it enters either q_{accept} or q_{reject}.

- An instantaneous description (a.k.a. configuration) is a string $\alpha q \beta$ where:
 - The contents of the tape is the string $\alpha \beta$
 - The machine is in state q
 - The read/write head is positioned over the first symbol in β.

- An accepting configuration is a configuration which contains q_{accept}.

- An rejecting configuration is a configuration which contains q_{reject}.

- A computation history is a sequence of instantaneous descriptions.

$$I_0 \vdash I_1 \vdash I_2 \ldots \vdash I_t$$

such that:

- I_0 is the start configuration $q_0 w$
- I_t is a halting configuration, i.e., contains q_{accept} or q_{reject}
- Each configuration I_j leads to the next configuration I_{j+1} according to the transition function δ.

- A Turing machine accepts an input string w if and only if there exists a computation history leading to an accepting configuration.

- A polynomial time bounded Turing machine is a Turing machine which, given input w of length n will halt within $p(n)$ steps, where $p(n)$ is a polynomial in n.

- A function f is a polynomial time computable function if and only if there exists a polynomial time bounded Turing machine which computes f.

- The class \mathcal{P} is the set of languages (or problems) which can be decided (solved) by a deterministic polynomial time bounded Turing machine.

- The class \mathcal{NP} is the set of languages (or problems) which can be decided (solved) by a non-deterministic polynomial time bounded Turing machine.

- Some authors define the class \mathcal{NP} as the set of problems which have deterministic polynomial time verifiers.\(^1\)

- It is unknown whether $\mathcal{P} = \mathcal{NP}$ or $\mathcal{P} \neq \mathcal{NP}$.

- A language L is polynomial time mapping reducible to L_0 if and only if there exists a polynomial time computable function f such that for every input string w over the alphabet of L, $f(w)$ is an output string over the alphabet of L_0 and $w \in L$ if and only if $f(w) \in L_0$.

- A language L_0 is \mathcal{NP}-complete if and only if two conditions hold:
 1. L_0 in \mathcal{NP}
 2. every language L in \mathcal{NP} is polynomial time mapping reducible to L_0.

- If only the second condition above holds, then we say L_0 is \mathcal{NP}-hard.

\(^1\) A verifier is a deterministic Turing machine which can check whether an alleged solution is correct.