CSC221 Data Structures & Algorithms I Fall 2015

Programming Assignment #1 — 3-D Arrays

In this lab our goals are to:

e review your C++ programming skills
e work with binary files, 3-D dynamically allocated arrays

e work with header files, object files, linking, and Makefiles

In this assignment we will compute and visualize a height map of a 3-D LiDAR data set.
The main program is provided for you in pre-compiled form (i.e., main.o). Visualization is
provided by a simple local library (1ibppm_graphic.a). Your task is to implement a class
named array3d to store the LiIDAR data set, and to provide the necessary class methods.
To get the parts to work together, we need to all agree on the public interface for class
array3d:

class array3d {
private:

// Private part of your implementation goes here.

public:
array3d() ; // Constructor
“array3d() ; // Destructor

bool read(char * fname) ;
void get_sizes(int & m, int & n, int & p) ;
int get_zmap_value(int x, int y) ;

}

Public Member Functions:

bool read(char * fname) : This public member function accepts a C-style character

string representing a file name. This file is a binary file containing pre-processed
LiDAR data. Function read() should:

e open the file

e read and store the sizes m, n, and p

e allocate an m x n x p 3-D array of characters

e read the data into the 3-D array

e close the file

Function read() returns true if successful, and false if an error occurs.!

L An error may occur if the function is unable to open the file, or if memory allocation fails when creating
the 3-D array.

void get_sizes(int & m, int & n, int & p) : This public member function gives the
caller the values of m, n, and p using pass-by-reference semantics.

void get_zmap_value(int x, int y) : This function returns the highest occupied cell
(largest z-index containing the value 1) for position x, y in the ground plane,

Task Overview:

1. Design and implement the private details of class array3d
2. Implement the public methods details of class array3d

3. Copy the main program from /usr/local/compiled_code/main.o to your Labl di-
rectory.

4. Copy the data file /usr/local/data/ig339.dat to your Labl directory.
5. Write a Makefile. Your Makefile must:

e compile your class array3d.cc to an object code file

e link the array3d.o, main.o, and the ppm_graphic library to create an executable
named zview.

Helpful Hints: Our PPM library is in /usr/local/lib. You will need to use two compiler
options during the linking step so that the g++ compiler:

1. knows the location of the PPM library, and

2. links the PPM library into your executable.

The correct compiler options are:

-L/usr/local/lib -lppm_graphic

Data:

LiDAR instruments produce a set of points where a reflection was detected; these data are
often called a “point cloud”. For purposes of this assignment, the point cloud has been
pre-processed into an “implicit geometry” form. In the implicit geometry, the observed
space is divided into a uniform mesh of “cells”. In this data set, each cell represents a cube
approximately 0.5 meters (19.7 inches). Any cell which is contains by at least one point
from in raw LiDAR point cloud is marked “occupied”. All other cells are marked “empty”.

Data Format: The first 12 bytes of the file represent three 4-byte integers: m, n, and p,
representing the number of rows, columns, and pages in the data that follows.

The remaining bytes (C++ type char) of the file indicate “occupied” by the value 1, and
“empty” with the value 0. The data is most easily understood by thinking in terms of an
X-Y-Z coordinate system, where:

e the positive X direction is East.
e the positive Y direction is South.

e the positive Z direction is Up.

The first m x n consecutive bytes form a matrix in column major order that represents the
ground level (Z = 0). Each subsequent group of m x n bytes form a matrix that represents
the next higher Z-value. There are a total of p planes in the Z direction.

Output: If all has gone well, the command:
% zview ig339.dat

will produce the following aerial view of the LiDAR data set:

Notice you can easily identify, trees, buildings, and light poles.

Turn In:

Keep all your work in a sub-directory named Labl. Change to the parent directory of Labl
and create a tar archive of your work using the command:

% tar cf Labl.tar Labil

Upload the file Labl.tar to your account on telesto.

