1. Binary Search Trees
 (a) Binary Search Property
 (b) Operations on binary search trees
 i. Traversals: inorder, preorder and postorder
 ii. Breadth-First traversal
 iii. Search
 (c) Best case v.s. worst case performance

2. AVL Trees
 (a) HB[1] property
 (b) Re-balancing: single and double rotations
 (c) Operations on AVL trees: search, insert, delete
 (d) Best case v.s. worst case performance; comparison to binary search trees.

3. “Big O” notation.
 (a) Time complexity for operations on data structures
 (b) Analyzing iterative code / nested loops.

4. Heaps
 (a) Heap property
 (b) Implementation in dense arrays
 (c) heapify() operation
 (d) building a heap from an unordered array
 (e) heapsort

5. Tries
 (a) Use as a dictionary
 (b) Operations: insert, search, delete

6. Graphs
 (a) Adjacency matrices, adjacency lists.
 (b) Graph traversal with pre- and post- numbers.
 (c) Topological sort of a directed acyclic graph

7. Miscellaneous
 (a) Hash Tables: Load factor
 (b) Hash Tables: Average length of a chain, standard deviation of a chain.
 (c) Searching a collection of records by multiple keys
 (d) Abstract data type – what is it ?
 (e) Recursion
 (f) Huffman codes

8. One big-picture question. Short essay on how to use data structures effectively in a “real-world” problem/application.