
CSC 101 - Spring 2013

Lab 5 - Networks

1. Our first problem in this lab relates to connecting a number of buildings (i.e., a campus)
with fiber optic cable. Each building will have a router and wireless network equipment
which will serve a local area network within the building. Routers can be configured to
route network traffic from any building to any other building provided there is some
fiber optic cable path from the source to the destination. It is Ok if the network traffic
has has to go through several routers to get to its destination. That’s good news: we
do not have to directly connect every building to every other building. But, we have to
provide enough connections so there is a pathway from every building to every other.

The cost of connecting different pairs of buildings varies, depending on the distance
between the buildings, and depending on what lies between the buildings. For example,
walkways that are cut-through by a trench digger must be rebuilt, adding to the cost.
Cutting through a parking lot, and making subsequent repairs is even more expensive.

It may be impractical to directly connect certain pairs of buildings. For these buildings,
every plausible trench plan either 1) goes though another building which is in the way,
or 2) crosses natural gas pipelines which is not allowed due to safety regulations, or
3) goes through property on which we have no legal right-of-way. For these pairs of
buildings, we will designate the cost of connecting these buildings as +∞ to indicate
that they can not be directly connected. You have sent your field engineers out to survey
the site, and obtain contract bids on the cost of connecting each pair of buildings. We
label our eight buildings: B1, B2, B3, B4, B5, B6, B7, and B8. The report of the field
engineers indicates the following costs (in thousands of dollars):

B1 B2 B3 B4 B5 B6 B7 B8

B1 0 12 +∞ +∞ 15 +∞ +∞ +∞

B2 12 0 10 4 2 7 +∞ +∞

B3 +∞ 10 0 6 +∞ 8 +∞ +∞

B4 +∞ 4 6 0 +∞ +∞ +∞ 5

B5 15 2 +∞ +∞ 0 11 9 17

B6 +∞ 7 8 +∞ 11 0 3 13

B7 +∞ +∞ +∞ +∞ 9 3 0 +∞

B8 +∞ +∞ +∞ 5 17 13 +∞ 0

Finally, it is your job to ensure that the project is completed at the lowest possible
cost. You must come up with an infrastructure plan (a list of pairs of buildings which
will be directly connected) which is lowest cost of all possible infrastructure plans. You
must also convince the Comptroller’s office and the Financial V.P. that your plan is
optimal.

The business problem described above is accurately modeled by a weighted graph. A
weighted graph is defined as follows:

1

Definition: A weighted graph is a tuple G = (V,E) where V is a set of n vertices

V = { v1, v2, v3, ..., vn }

and a set of m edges

E = { (vi1 , vj1), (vi2 , vj2), (vi3 , vj3), ... , (vim , vjm) } ,

together with a cost function

f : V × V → (R+ ∪+∞) .

A sub-graph (with no cycles) which connects all of the vertices in the graph is called a
spanning tree.

For a weighted graph, we can define the cost of a spanning tree to be the sum the
costs of all of the edges in the graph. Various spanning trees are possible, and each will
have a (possibly) different cost. A minimal spanning tree is a spanning tree which
is as low cost as any other spanning tree. An important theorem relating to minimal
spanning trees is: If all of the edge costs are distinct, then the minimal spanning tree

is unique.1

The cost table shown above can be illustrated by the following weighted graph:

B
B

B

B

B

B

B

B

 1
2

3

4

5

6

7

83

7

5

9

4

68

12

11
15

13

17

10

2

Fortunately, there are several straightforward algorithms to solve the minimal spanning
tree problem. One such algorithm is known as Kruskal’s algorithm2.

There are several approaches to algorithm design. Kruskal’s algorithm takes an ap-
proach known as a greedy algorithm. A greedy algorithm makes a “greedy” local
choice without any global knowledge; further, a sequence of greedy local choices leads
to a globally correct solution. In the case of Kruskal’s algorithm, the local decision is
to choose the next lowest-cost edge. I.e., if you want a lowest-cost spanning tree, build
it using the lowest-cost edges. At the point in time where the algorithm makes the

1The curious reader is referred to the graph theory literature for a mathematical proof of this theorem.
2Kruskal’s algorithm was first published in the Proceedings of the American Mathematical Society in 1956.

An alternative is Jarnik’s algorithm (a.k.a. Prim’s algorithm), first published by V. Jarnik in Czech in 1930,
and later independently published by R. C. Prim in 1957.

2

“greedy” choice, it has not examined the other edges (i.e., it has no “global” knowl-
edge of the problem details). Not all problems can be solved by a greedy approach.3

Mathematical proof is required to show that the sequence of greedy local choices leads
to a globally correct solution.

A pseudo-code statement of Kruskal’s algorithm is given below:

Input: A weighted undirected graph G = (V,E) with weight function f : V × V → R+ ∪+∞

Output: A minimal spanning tree T for G.

Method:

T = φ ; /* Empty set. */
S = φ ; /* Empty set. */
Construct a priority queue Q of all edges in E ;
for each vertex v ∈ V do add {v} to S.
while ||S|| > 1 do

choose edge (v, w) from Q of lowest cost ;
delete (v, w) from Q ;
if (v and w are in different sets W1 and W2 in S) then

Replace W1 and W2 in S by W1 ∪W2 ;
Add (v, w) to T ;

end if

end while

Your Task: Use Kruskal’s algorithm to find a solution to the network planning prob-
lem posed above. Draw a separate diagram to illustrate the steps in the algorithm as
each edge is added to the minimal spanning tree. As you consider the edges in order
of increasing cost, indicate which edges are not added to the minimal spanning tree.

What is the total cost of your fiber optic infrastructure plan ? Are you sure there does
not exist a lower cost plan (why or why not) ?

Your Next Task: Use Dijkstra’s algorithm to find the shortest path from B1 to all
the other vertices. On each step, indicate the vertex that you choose, and the current
contents of the array D.

A pseudo-code statement of Dijkstra’s algorithm is given below:

Input: A weighted undirected graph G = (V,E) with weight function f : V × V → R+ ∪+∞
A source vertex v1.

Output: A table D indicating cost of the shortest path from v1 to every other vertex in V .

3For example, a greedy algorithm approach fails miserably at solving the well known “Knapsack Problem”.
E.g., {3, 5, 7, 15, 19, 22, 30} with K = 26.

3

Method:

S = { v1 } /* Set of vertices for which shortest path is known. */

for each vertex v do

D[v] = f(v1, v) /* Cost of the edge from v1 to v. */

while (S 6= V) do

choose vertex w not in S such that D[w] is smallest
add w to S

for each vertex v in V but not in S do

D[v] = min(D[v] , D[w] + f(w, v))
end for

end while

4

