
Sun Studio 12: OpenMP API
User's Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–5270

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2007 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

070518@17466

Contents

Preface ...5

1 Introducing the OpenMP API ...11
1.1 Where to Find the OpenMP Specifications .. 11
1.2 Special Conventions Used Here .. 12

2 Compiling and Running OpenMP Programs ... 13
2.1 Compiler Options To Use .. 13
2.2 Fortran 95 OpenMP Validation ... 15
2.3 OpenMP Environment Variables .. 16
2.4 Processor Binding on Solaris ... 19
2.5 Stacks and Stack Sizes ... 23
2.6 Checking OpenMP Programs With the Thread Analyzer ... 23

3 Implementation-Defined Behaviors ..25
3.1 Implementation-Defined Behaviors ... 25

4 Nested Parallelism ...33
4.1 The Execution Model .. 33
4.2 Control of Nested Parallelism .. 34

4.2.1 OMP_NESTED .. 34
4.2.2 SUNW_MP_MAX_POOL_THREADS .. 35
4.2.3 SUNW_MP_MAX_NESTED_LEVELS .. 36

4.3 Using OpenMP Library Routines Within Nested Parallel Regions ... 37
4.4 Some Tips on Using Nested Parallelism ... 40

3

5 Automatic Scoping of Variables ..41
5.1 The Autoscoping Data Scope Clause .. 41

5.1.1 __auto Clause .. 41
5.1.2 default(__auto) Clause ... 42

5.2 Scoping Rules ... 42
5.2.1 Scoping Rules For Scalar Variables ... 42
5.2.2 Scoping Rules for Arrays .. 42

5.3 General Comments About Autoscoping .. 43
5.3.1 Autoscoping Rules for Fortran 95: .. 43
5.3.2 Autoscoping Rules for C/C++: .. 43

5.4 Checking the Results of Autoscoping ... 44
5.5 Known Limitations of the Current Implementation .. 47

6 Performance Considerations ...49
6.1 Some General Recommendations ... 49
6.2 False Sharing And How To Avoid It .. 52

6.2.1 What Is False Sharing? .. 53
6.2.2 Reducing False Sharing .. 53

6.3 Solaris OS Tuning Features .. 54

A Placement of Clauses on Directives .. 55

B Converting to OpenMP ...57
B.1 Converting Legacy Fortran Directives ... 57

B.1.1 Converting Sun-Style Fortran Directives .. 57
B.1.2 Converting Cray-Style Fortran Directives .. 59

B.2 Converting Legacy C Pragmas .. 60
B.2.1 Issues Between Legacy C Pragmas and OpenMP ... 61

Index ..63

Contents

Sun Studio 12: OpenMP API User's Guide •4

Preface

The OpenMP API User’s Guide summarizes the OpenMP Fortran 95, C, and C++ application
program interface (API) for building multiprocessing applications. SunTM Studio compilers
support the OpenMP API.

This guide is intended for scientists, engineers, and programmers who have a working
knowledge of the Fortran, C, or C++ languages, and the OpenMP parallel programming model.
Familiarity with the SolarisTM operating environment or UNIX® in general is also assumed.

Typographic Conventions
TABLE P–1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.

5

TABLE P–2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos

Shell Prompts

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of processor
architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported
systems for the version of the Solaris Operating System you are running are available in the
hardware compatibility lists at http://www.sun.com/bigadmin/hcl. These documents cite any
implementation differences between the platform types.

In this document, these x86 related terms mean the following:
■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64’ points out specific 64-bit information about AMD64 or EM64T systems.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the hardware compatibility lists.

Preface

Sun Studio 12: OpenMP API User's Guide •6

Accessing Sun Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed with the
software on your local system or network at file:/opt/SUNWspro/docs/index.html on
Solaris platforms and at file:/opt/sun/sunstudio12/docs/index.html on Linux
platforms.
If your software is not installed in the /opt directory on a Solaris platform or the /opt/sun
directory on a Linux platform, ask your system administrator for the equivalent path on
your system.

■ Most manuals are available from the docs.sun.comsm web site. The following titles are
available through your installed software on Solaris platforms only:
■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

The release notes for both Solaris platforms and Linux platforms are available from the
docs.sun.com web site.

■ Online help for all components of the IDE is available through the Help menu, as well as
through Help buttons on many windows and dialog boxes, in the IDE.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print, and buy Sun
Microsystems manuals through the Internet. If you cannot find a manual, see the
documentation index that is installed with the software on your local system or network.

Note – Sun is not responsible for the availability of third-party Web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused by or in connection with
the use of or reliance on any such content, goods, or services that are available on or through
such sites or resources.

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive technologies
for users with disabilities. You can find accessible versions of documentation as described in the
following table. If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

Preface

7

http://docs.sun.com

Type of Documentation Format and Location of Accessible Version

Manuals (except
third-party manuals)

HTML at http://docs.sun.com

Third-party manuals:
■ Standard C++ Library

Class Reference
■ Standard C++ Library

User’s Guide
■ Tools.h++ Class

Library Reference
■ Tools.h++ User’s Guide

HTML in the installed software on Solaris platforms through the
documentation index
at file:/opt/SUNWspro/docs/index.html

Readmes HTML on the developer portal at
http://developers.sun.com/sunstudio/documentation/ss12/

Man pages HTML in the installed software through the documentation index
at file:/opt/SUNWspro/docs/index.html on Solaris platforms,
and at file:/opt/sun/sunstudio12/docs/index.html on Linux
platforms,

Online help HTML available through the Help menu and Help buttons in the
IDE

Release notes HTML at http://docs.sun.com

Related Sun Studio Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your software is not
installed in the /opt directory, ask your system administrator for the equivalent path on your
system

Document Title Description

Fortran Programming Guide Describes how to write effective Fortran code on
Solaris environments; input/output, libraries,
performance, debugging, and parallel processing.

Fortran Library Reference Details the Fortran library and intrinsic routines

Fortran User’s Guide Describes the compile-time environment and
command-line options for the f95 compiler. Also
includes guidelines for migrating legacy f77
programs to f95.

Preface

Sun Studio 12: OpenMP API User's Guide •8

http://docs.sun.com
http://developers.sun.com/sunstudio/documentation/ss12/
http://docs.sun.com

Document Title Description

C User’s Guide Describes the compile-time environment and
command-line options for the cc compiler.

C++ User’s Guide Describes the compile-time environment and
command-line options for the CC compiler.

Numerical Computation Guide Describes issues regarding the numerical
accuracy of floating-point computations.

Accessing Related Solaris Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris OS.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris link-editor and runtime
linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris
threads APIs, programming with
synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.

Resources for Developers
Visit http://developers.sun.com/sunstudio to find these frequently updated resources:

■ Articles on programming techniques and best practices
■ A knowledge base of short programming tips
■ Documentation of compilers and tools components, as well as corrections to the

documentation that is installed with your software
■ Information on support levels
■ User forums
■ Downloadable code samples
■ New technology previews

Preface

9

http://developers.sun.com/sunstudio

You can find additional resources for developers at http://developers.sun.com.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this document, go
to:

http://www.sun.com/service/contacting

Sending Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit your comments to Sun at this URL:

http://www.sun.com/hwdocs/feedback

Please include the part number (819-5270) of your document in the subject line of your email.

Preface

Sun Studio 12: OpenMP API User's Guide •10

http://developers.sun.com
http://www.sun.com/service/contacting
http://www.sun.com/hwdocs/feedback

Introducing the OpenMP API

The OpenMPTM Application Program Interface is a portable, parallel programming model for
shared memory multiprocessor architectures, developed in collaboration with a number of
computer vendors. The specifications were created and are published by the OpenMP
Architecture Review Board.

The OpenMP API is the recommended parallel programming model for all Sun Studio
compilers on SolarisTM OS platforms. See the Appendix for guidelines on converting legacy
Fortran and C parallelization directives to OpenMP.

1.1 Where to Find the OpenMP Specifications
The material presented in this manual describes issues specific to the Sun Studio
implementation of the OpenMP API. For complete details you must refer to the OpenMP
specification documents.
This manual makes direct references to sections in the OpenMP 2.5 API specification.

The OpenMP 2.5 specification for C, C++, and Fortran 95 can be found on the official OpenMP
website, http://www.openmp.org.

Additional information about OpenMP including tutorials and other resources for developers
can be found on the cOMPunity website, http://www.compunity.org

Latest information about the Sun Studio compiler releases and their implementation of the
OpenMP API can be found on the Sun Developer Network portal,
http://developers.sun.com/sunstudio

1C H A P T E R 1

11

http://www.openmp.org
http://www.compunity.org
http://developers.sun.com/sunstudio

1.2 Special Conventions Used Here
In the tables and examples that follow, Fortran directives and source code are shown in upper
case, but are case-insensitive.

The term structured-block refers to a block of Fortran or C/C++ statements having no transfers
into or out of the block.

Constructs within square brackets, [...], are optional.

Throughout this manual, “Fortran” refers to the Fortran 95 language and compiler, f95.

The terms “directive” and “pragma” are used interchangeably in this manual.

1.2 Special Conventions Used Here

Sun Studio 12: OpenMP API User's Guide •12

Compiling and Running OpenMP Programs

This chapter describes compiler and runtime options affecting programs that utilize the
OpenMP API.

To run a parallelized program in a multithreaded environment, you must set the
OMP_NUM_THREADS environment variable prior to program execution. This tells the runtime
system the maximum number of threads the program can create. The default is 1. In general, set
OMP_NUM_THREADS to a value no larger than the number of available virtual processors on the
target platform. Set OMP_DYNAMIC to FALSE to use the number of threads specified by
OMP_NUM_THREADS.

The latest information regarding Sun Studio compilers and OpenMP can be found on the Sun
Developer Network portal, http://developers.sun.com/sunstudio

2.1 Compiler Options To Use
To enable explicit parallelization with OpenMP directives, compile your program with the cc,
CC, or f95 option flag -xopenmp. This flag can take an optional keyword argument. (The f95
compiler accepts both -xopenmp and -openmp as synonyms.)

The -xopenmp flag accepts the following keyword sub-options.

-xopenmp=parallel Enables recognition of OpenMP pragmas. The minimum optimization
level for -xopenmp=parallel is -xO3. The compiler changes the
optimization from a lower level to -xO3 if necessary, and issues a warning.

2C H A P T E R 2

13

-xopenmp=noopt Enables recognition of OpenMP pragmas. The compiler does not raise the
optimization level if it is lower than -xO3. If you explicitly set the
optimization level lower than -xO3, as in -xO2 -openmp=noopt the
compiler will issue an error. If you do not specify an optimization level
with -openmp=noopt, the OpenMP pragmas are recognized, the program
is parallelized accordingly, but no optimization is done.

-xopenmp=stubs This option is no longer supported. An OpenMP stubs library is provided
for users’ convenience. To compile an OpenMP program that calls
OpenMP library routines but ignores the OpenMP pragmas, compile the
program without an -xopenmp option, and link the object files with the
libompstubs.a library. For example, % cc omp_ignore.c -lompstubs

Linking with both libompstubs.a and the OpenMP runtime library
libmtsk.so is unsupported and may result in unexpected behavior.

-xopenmp=none Disables recognition of OpenMP pragmas and does not change the
optimization level.

Additional Notes:

■ If you do not specify —xopenmp on the command line, the compiler assumes —xopenmp=none
(disabling recognition of OpenMP pragmas).

■ If you specify —xopenmp but without a keyword sub-option, the compiler assumes
—xopenmp=parallel.

■ Specifying -xopenmp=parallel or noopt will define the _OPENMP preprocessor token to be
YYYYMM (specifically 200505L for C/C++ and 200505 for Fortran 95).

■ When debugging OpenMP programs with dbx, compile with -xopenmp=noopt -g

■ The default optimization level for -xopenmp might change in future releases. Compilation
warning messages can be avoided by specifying an appropriate optimization level explicitly.

■ With Fortran 95, -xopenmp , -xopenmp=parallel, -xopenmp=noopt will add -stackvar

automatically.
■ When compiling and linking an OpenMP program in separate steps, include -xopenmp on

each of the compile and the link steps.
■ Use the -xvpara C option or the —vpara Fortran 95 option to display compiler

parallelization messages.
■ For best performance and functionality, make sure that the latest OpenMP runtime library,

libmtsk.so, is installed on the running system.

2.1 Compiler Options To Use

Sun Studio 12: OpenMP API User's Guide •14

2.2 Fortran 95 OpenMP Validation
You can obtain a static, interprocedural validation of a Fortran 95 program’s OpenMP
directives by using the f95 compiler’s global program checking feature. Enable OpenMP
checking by compiling with the -XlistMP flag. (Diagnostic messages from -XlistMP appear in a
separate file created with the name of the source file and a .lst extension). The compiler will
diagnose the following violations and parallelization inhibitors:

■ Violations in the specifications of parallel directives, including improper nesting.
■ Parallelization inhibitors due to data usage, detected by interprocedural dependence

analysis.
■ Parallelization inhibitors detected by interprocedural pointer analysis.

For example, compiling a source file ord.f with -XlistMP produces a diagnostic file ord.lst:

FILE "ord.f"

1 !$OMP PARALLEL

2 !$OMP DO ORDERED

3 do i=1,100

4 call work(i)

5 end do

6 !$OMP END DO

7 !$OMP END PARALLEL

8

9 !$OMP PARALLEL

10 !$OMP DO

11 do i=1,100

12 call work(i)

13 end do

14 !$OMP END DO

15 !$OMP END PARALLEL

16 end

17 subroutine work(k)

18 !$OMP ORDERED

^

**** ERR-OMP: It is illegal for an ORDERED directive to bind to a

DO directive (ord.f, line 10, column 2) that does not have the

ORDERED clause specified.

19 write(*,*) k

20 !$OMP END ORDERED

21 return

22 end

In this example, the ORDERED directive in subroutine WORK receives a diagnostic that refers to the
second DO directive because it lacks an ORDERED clause.

2.2 Fortran 95 OpenMP Validation

Chapter 2 • Compiling and Running OpenMP Programs 15

2.3 OpenMP Environment Variables
The OpenMP specification define four environment variables that control the execution of
OpenMP programs. These are summarized in the following table.

TABLE 2–1 OpenMP Environment Variables

Environment Variable Function

OMP_SCHEDULE Sets schedule type for DO, PARALLEL DO, for, parallel for,
directives/pragmas with schedule type RUNTIME specified. If not defined,
a default value of STATIC is used. value is “type[,chunk]”

Example: setenv OMP_SCHEDULE ’GUIDED,4’

OMP_NUM_THREADS or PARALLEL Sets the number of threads to use during execution of a parallel region.
You can override this value by a NUM_THREADS clause, or a call to
OMP_SET_NUM_THREADS(). If not set, a default of 1 is used. value is a
positive integer. For compatibility with legacy programs, setting the
PARALLEL environment variable has the same effect as setting
OMP_NUM_THREADS. However, if they are both set to different values, the
runtime library will issue an error message.

Example: setenv OMP_NUM_THREADS 16

OMP_DYNAMIC Enables or disables dynamic adjustment of the number of threads
available for execution of parallel regions. If not set, a default value of
TRUE is used. value is either TRUE or FALSE.

Example: setenv OMP_DYNAMIC FALSE

OMP_NESTED Enables or disables nested parallelism.

value is either TRUE or FALSE. The default is FALSE.

Example: setenv OMP_NESTED FALSE

Additional multiprocessing environment variables affect execution of OpenMP programs and
are not part of the OpenMP specifications. These are summarized in the following table.

2.3 OpenMP Environment Variables

Sun Studio 12: OpenMP API User's Guide •16

TABLE 2–2 Multiprocessing Environment Variables

Environment Variable Function

SUNW_MP_WARN Controls warning messages issued by the OpenMP runtime
library. If set to TRUE the runtime library issues warning messages
to stderr; FALSE disables warning messages. The default is FALSE.

The OpenMP runtime library has the ability to check for many
common OpenMP violations, such as incorrect nesting and
deadlocks. Runtime checking does add overhead to the execution
of the program. See Chapter 3.

The runtime library issues warning messages to stderr if
SUNW_MP_WARN is set to TRUE. The runtime library will also issue
warning messages if the program registers a call-back function to
accept warning messages. A program can register a user call-back
function by calling the following function:

int sunw_mp_register_warn (void (*func)(void *));

The address of the call-back function is passed as argument to
sunw_mp_register_warn(). This function returns 0 upon
successfully registering the call-back function, 1 upon failure.

If the program has registered a call-back function, libmtsk will
call the registered function passing a pointer to the localized
string containing the error message. The memory pointed to is no
longer valid upon return from the call-back function.

Example:

setenv SUNW_MP_WARN TRUE

2.3 OpenMP Environment Variables

Chapter 2 • Compiling and Running OpenMP Programs 17

TABLE 2–2 Multiprocessing Environment Variables (Continued)
Environment Variable Function

SUNW_MP_THR_IDLE Controls the status of idle threads in an OpenMP program that
are waiting at a barrier or waiting for new parallel regions to work
on. You can set the value to be one of the following: SPIN, SLEEP,
SLEEP(times), SLEEP(timems), SLEEP(timemc), where time is an
integer that specifies an amount of time, and s, ms, and mc specify
the time unit (seconds, milli-seconds, and micro-seconds,
respectively).

SPIN specifies that an idle thread should spin while waiting at
barrier or waiting for new parallel regions to work on. SLEEP
without a time argument specifies that an idle thread should sleep
immediately. SLEEP with a time argument specifies the amount of
time a thread should spin-wait before going to sleep.

The default idle thread status is to sleep after possibly
spin-waiting for some amount of time. SLEEP, SLEEP(0),
SLEEP(0s), SLEEP(0ms), and SLEEP(0mc) are all equivalent.

Examples:

setenv SUNW_MP_THR_IDLE SPIN

setenv SUNW_MP_THR_IDLE SLEEP

setenv SUNW_MP_THR_IDLE SLEEP(2s)

setenv SUNW_MP_THR_IDLE SLEEP(20ms)

setenv SUNW_MP_THR_IDLE SLEEP(150mc)

SUNW_MP_PROCBIND This environment variable works on Solaris systems only. The
SUNW_MP_PROCBIND environment variable can be used to bind
threads of an OpenMP program to virtual processors on the
running system. Performance can be enhanced with processor
binding, but performance degradation will occur if multiple
threads are bound to the same virtual processor. See “2.4
Processor Binding on Solaris” on page 19 for details.

SUNW_MP_MAX_POOL_THREADS Specifies the maximum size of the thread pool. The thread pool
contains only non-user threads that the OpenMP runtime library
creates. It does not contain the master thread or any threads
created explicitly by the user’s program. If this environment
variable is set to zero, the thread pool will be empty and all
parallel regions will be executed by one thread. The default, if not
specified, is 1023. See “4.2 Control of Nested Parallelism” on
page 34 for details.

2.3 OpenMP Environment Variables

Sun Studio 12: OpenMP API User's Guide •18

TABLE 2–2 Multiprocessing Environment Variables (Continued)
Environment Variable Function

SUNW_MP_MAX_NESTED_LEVELS Specifies the maximum depth of active nested parallel regions.
Any parallel region that has an active nested depth greater than
the value of this environment variable will be executed by only
one thread. A parallel region is considered not active if it is an
OpenMP parallel region that has a false IF clause. The default, if
not specified, is 4. See “4.2 Control of Nested Parallelism” on
page 34 for details.

STACKSIZE Sets the stack size for each thread. The value is in kilobytes. The
default thread stack sizes are 4 Mb on 32-bit SPARC V8 and x86
platforms, and 8 Mb on 64-bit SPARC V9 and x86 platforms.

Example:

setenv STACKSIZE 8192 sets the thread stack size to 8 Mb

The STACKSIZE environment variable also accepts numerical
values with a suffix of either B, K, M, or G for bytes, kilobytes,
megabytes, or gigabytes respectively. The default is kilobytes.

SUNW_MP_GUIDED_WEIGHT Sets the weighting factor used to determine the size of chunks
assigned to threads in loops with GUIDED scheduling. The value
should be a positive floating-point number, and will apply to all
loops with GUIDED scheduling in the program. If not set, the
default value assumed is 2.0.

2.4 Processor Binding on Solaris
With processor binding, the programmer instructs the Solaris Operating System that a thread
in the program should run on the same processor throughout the execution of the program.
(This feature is not available on Linux.)

Processor binding, when used along with static scheduling, benefits applications that exhibit a
certain data reuse pattern where data accessed by a thread in a parallel or worksharing region
will be in the local cache from a previous invocation of a parallel or worksharing region.

From the hardware point of view, a computer system is composed of one or more physical
processors. From the Operating System point of view, each of these physical processors maps to
one or more virtual processors onto which threads in a program can be run. If n virtual
processors are available, then n threads can be scheduled to run at the same time. Depending on
the system, a virtual processor may be a processor, a core, etc. For example, each UltraSPARC
IV physical processor has two cores; from the Solaris OS point of view, each of these cores is a
virtual processor onto which a thread can be scheduled to run. The UltraSPARC T1 physical
processor, on the other hand, has eight cores, and each core can run four simultaneous
processing threads; from the Solaris OS point of view, there are 32 virtual processors onto

2.4 Processor Binding on Solaris

Chapter 2 • Compiling and Running OpenMP Programs 19

which threads can be scheduled to run. On the Solaris Operating System, the number of virtual
processors can be determined by using the psrinfo(1M) command.

When the operating system binds threads to processors, they are in effect bound to specific
virtual processors, not physical processors.

When running under the Solaris OS, set the SUNW_MP_PROCBIND environment variable to bind
threads in an OpenMP program to specific virtual processors. The value specified for
SUNW_MP_PROCBIND can be one of the following:

■ The string "TRUE" or "FALSE" (or lower case "true" or "false").
For example,
% setenv SUNW_MP_PROCBIND "false"

■ A non-negative integer.
For example, % setenv SUNW_MP_PROCBIND "2"

■ A list of two or more non-negative integers separated by one or more spaces.
For example, % setenv SUNW_MP_PROCBIND "0 2 4 6"

■ Two non-negative integers, n1 and n2, separated by a minus ("-"); n1 must be less than or
equal to n2.
For example, % setenv SUNW_MP_PROCBIND "0-6"

Note that the non-negative integers referred to above denote logical identifiers (IDs). Logical
IDs may be different from virtual processor IDs. The difference will be explained below.

Virtual Processor IDs:

Each virtual processor in a system has a unique processor ID. You can use the Solaris OS
psrinfo(1M) command to display information about the processors in a system, including
their processor IDs. Moreover, you can use the prtdiag(1M) command to display system
configuration and diagnostic information.

You can use psrinfo -pv to list all physical processors in the system and the virtual processors
that are associated with each physical processor.

Virtual processor IDs may be sequential or there may be gaps in the IDs. For example, on a Sun
Fire 4810 with 8 UltraSPARC IV processors (16 cores), the virtual processor IDs may be: 0, 1, 2,
3, 8, 9, 10, 11, 512, 513, 514, 515, 520, 521, 522, 523.

Logical IDs:

As mentioned above, the non-negative integers specified for SUNW_MP_PROCBIND are logical IDs.
Logical IDs are consecutive integers that start with 0. If the number of virtual processors
available in the system is n, then their logical IDs are 0, 1, ..., n-1, in the order presented by
psrinfo(1M). The following Korn shell script can be used to display the mapping from virtual
processor IDs to logical IDs.

2.4 Processor Binding on Solaris

Sun Studio 12: OpenMP API User's Guide •20

#!/bin/ksh

NUMV= `psrinfo | fgrep "on-line" | wc -l `

set -A VID `psrinfo | cut -f1 `

echo "Total number of on-line virtual processors = $NUMV"

echo

let "I=0"

let "J=0"

while [[$I -lt $NUMV]]

do

echo "Virtual processor ID ${VID[I]} maps to logical ID ${J}"

let "I=I+1"

let "J=J+1"

done

On systems where a single physical processor maps to several virtual processors, it may be
useful to know which logical IDs correspond to virtual processors that belong to the same
physical processor. The following Korn shell script can be used with later Solaris releases to
display this information.

#!/bin/ksh

NUMV= `psrinfo | grep "on-line" | wc -l `

set -A VLIST `psrinfo | cut -f1 `

set -A CHECKLIST `psrinfo | cut -f1 `

let "I=0"

while [$I -lt $NUMV]

do

let "COUNT=0"

SAMELIST="$I"

let "J=I+1"

while [$J -lt $NUMV]

do

if [${CHECKLIST[J]} -ne -1]

then

if [`psrinfo -p ${VLIST[I]} ${VLIST[J]} ` = 1]

then

SAMELIST="$SAMELIST $J"

let "CHECKLIST[J]=-1"

let "COUNT=COUNT+1"

fi

fi

2.4 Processor Binding on Solaris

Chapter 2 • Compiling and Running OpenMP Programs 21

let "J=J+1"

done

if [$COUNT -gt 0]

then

echo "The following logical IDs belong to the same physical processor:"

echo "$SAMELIST"

echo " "

fi

let "I=I+1"

done

Interpreting the Value Specified for SUNW_MP_PROCBIND:

If the value specified for SUNW_MP_PROCBIND is a non-negative integer, then that integer denotes
the starting logical ID of the virtual processor to which threads should be bound. Threads will
be bound to virtual processors in a round-robin fashion, starting with the processor with the
specified logical ID, and wrapping around to the processor with logical ID 0, after binding to the
processor with logical ID n-1.If the value specified for SUNW_MP_PROCBIND is a list of two or more
non-negative integers, then threads will be bound in a round-robin fashion to virtual processors
with the specified logical IDs. Processors with logical IDs other than those specified will not be
used.

If the value specified for SUNW_MP_PROCBIND is two non-negative integers separated by a minus
("-"), then threads will be bound in a round-robin fashion to virtual processors in the range that
begins with the first logical ID and ends with the second logical ID. Processors with logical IDs
other than those included in the range will not be used.

If the value specified for SUNW_MP_PROCBIND does not conform to one of the forms described
above, or if an invalid logical ID is given, then an error message will be emitted and execution of
the program will terminate.

Note that the number of threads created by the microtasking library, libmtsk, depends on
environment variables, API calls in the user’s program, and the num_threads clause.
SUNW_MP_PROCBIND specifies the logical IDs of virtual processors to which the threads should be
bound. Threads will be bound to that set of processors in a round-robin fashion. If the number
of threads used in the program is less than the number of logical IDs specified by
SUNW_MP_PROCBIND, then some virtual processors will not be used by the program. If the
number of threads is greater than the number of logical IDs specified by SUNW_MP_PROCBIND,
them some virtual processors will have more than one thread bound to them.

2.4 Processor Binding on Solaris

Sun Studio 12: OpenMP API User's Guide •22

2.5 Stacks and Stack Sizes
The executing program maintains a main stack for the initial thread executing the program, as
well as distinct stacks for each slave thread. Stacks are temporary memory address spaces used
to hold arguments and automatic variables during invocation of a subprogram or function
reference.

In general, the default main stack size is 8 megabytes. Compiling Fortran programs with the f95
-stackvar option forces the allocation of local variables and arrays on the stack as if they were
automatic variables. Use of -stackvar with OpenMP programs is implied with explicitly
parallelized programs because it improves the optimizer’s ability to parallelize calls in loops.
(See the Fortran User’s Guide for a discussion of the -stackvar flag.) However, this may lead to
stack overflow if not enough memory is allocated for the stack.

Use the limit C-shell command, or the ulimit ksh/sh command, to display or set the size of
the main stack.

Each slave thread of an OpenMP program has its own thread stack. This stack mimics the initial
(or main) thread stack but is unique to the thread. The thread’s PRIVATE arrays and variables
(local to the thread) are allocated on the thread stack. The default size is 4 megabytes on 32-bit
SPARC V8 and x86 platforms, and 8 megabytes on 64-bit SPARC V9 and x86 platforms. The
size of the helper thread stack is set with the STACKSIZE environment variable.

demo% setenv STACKSIZE 16384 <-Set thread stack size to 16 Mb (C shell)

demo$ STACKSIZE=16384 <-Same, using Bourne/Korn shell
demo$ export STACKSIZE

Finding the best stack size might have to be determined by trial and error. If the stack size is too
small for a thread to run it may cause silent data corruption in neighboring threads, or
segmentation faults. If you are unsure about stack overflows, compile your Fortran, C, or C++
programs with the -xcheck=stkovf compiler option to force a segmentation fault on stack
overflow. This stops the program before any data corruption can occur. (Note: The
-xcheck=stkovf compiler option is available only on SPARC systems).

2.6 Checking OpenMP Programs With the Thread Analyzer
You can check your OpenMP program for data races and deadlocks by using the Sun Studio
Thread Analyzer tool. Refer to the Thread Analyzer manual and the tha(1) man page for
details.

2.6 Checking OpenMP Programs With the Thread Analyzer

Chapter 2 • Compiling and Running OpenMP Programs 23

24

Implementation-Defined Behaviors

This chapter notes specific behaviors in the OpenMP 2.5 specification that are implementation
dependent. For last-minute information regarding the latest compiler releases, see the compiler
documentation on the Sun Developer Network portal,
http://developers.sun.com/sunstudio

3.1 Implementation-Defined Behaviors
■ Memory Model

There is no guarantee that memory accesses by multiple threads to the same variable
without synchronization are atomic with respect to each other.

Several implementation-dependent and application-dependent factors affect whether
accesses are atomic or not. Some variables might be larger than the largest atomic memory
operation on the target platform. Some variables might be mis-aligned or of unknown
alignment and the compiler or the run-time system may need to use multiple loads/stores to
access the variable. Sometimes there are faster code sequences that use more loads/stores.

■ Internal Control Variables
The OpenMP runtime library maintains the following internal control variables:
nthreads-var - stores the number of threads requested for future parallel regions.
dyn-var - controls whether dynamic adjustment of the number of threads to be used for
future parallel regions is enabled.
nest-var - controls whether nested parallelism is enabled for future parallel regions.
run-sched-var - stores scheduling information to be used for loop regions using the RUNTIME
schedule clause.
def-sched-var - stores implementation defined default scheduling information for loop
regions.

3C H A P T E R 3

25

http://developers.sun.com/sunstudio

The runtime library maintains separate copies of each of nthreads-var, dyn-var, and nest-var
for each thread. On the other hand, the runtime library maintains one copy of each of
run-sched-var and def-sched-var that applies to all threads.

■ Number of Threads
The default value of nthreads-var is 1. That is, without an explicit num_threads() clause, a
call to the omp_set_num_threads() routine, or an explicit definition of the
OMP_NUM_THREADS environment variable, the default number of threads in a team is 1.
A call to omp_set_num_threads() modifies the value of nthreads-var for the calling thread
only and applies to parallel regions at the same or inner nesting level encountered by the
calling thread.
If the requested number of threads is greater than the number of threads an implementation
can support or if the value is not a positive integer, then if SUNW_MP_WARN is set to TRUE or a
callback function is registered by a call to sunw_mp_register_warn(), a warning message
will be issued.

■ Nested Parallelism
Nested parallelism is supported. Nested parallel regions can be executed by multiple threads.
The default value of nest-var is false. That is, nested parallelism is disabled by default. Set the
OMP_NESTED environment variable, or call the omp_set_nested() routine to enable it.
A call to omp_set_nested() modifies the value of nest-var for the calling thread only and
applies to parallel regions at the same or inner nesting level encountered by the calling
thread.
By default, the maximum number of active nesting levels supported is 4. You can change
that maximum by setting the environment variable SUNW_MP_MAX_NESTED_LEVELS.

■ Dynamic Adjustment of Threads
The default value of dyn-var is true. That is, dynamic adjustment is enabled by default. Set
the OMP_DYNAMIC environment variable, or call the omp_set_dynamic() routine to disable
dynamic adjustment.
A call to omp_set_dynamic() modifies the value of dyn-var for the calling thread only and
applies to parallel regions at the same or inner nesting level encountered by the calling
thread.
If dynamic adjustment is enabled, then the number of threads in the team is adjusted to be
the minimum of:
■ the number of threads the user requested
■ 1 + the number of available threads in the pool
■ the number of available virtual processors

On the other hand, if dynamic adjustment is disabled, then the number of threads in the
team will be the minimum of:
■ the number of threads the user requested
■ 1 + the number of available threads in the pool

3.1 Implementation-Defined Behaviors

Sun Studio 12: OpenMP API User's Guide •26

In exceptional situations, such as when there is lack of system resources, the number of
threads supplied will be less than described above. In these situations, if SUNW_MP_WARN is set
to TRUE or a callback function is registered via a call to sunw_mp_register_warn(), a
warning message will be issued.

Refer to Chapter 2 for more information about the pool of threads and the nested
parallelism execution model.

■ Loop Scheduling
The default value of def-sched-var is STATIC scheduling. To specify a different schedule for a
loop region, use the SCHEDULE clause.
The default value of run-sched-var is also STATIC scheduling. You can change the default by
setting the OMP_SCHEDULE environment variable

■ GUIDED: Determination of Chunk Sizes
The default chunk size for SCHEDULE(GUIDED) when chunksize is not specified is 1. The
OpenMP runtime library uses the following formula for computing the chunk sizes for a
loop with GUIDED scheduling: chunksize = unassigned_iterations / (weight * num_threads)
where: unassigned_iterations is the number of iterations in the loop that have not yet been
assigned to any thread; weight is a floating-point constant that can be specified by the user at
runtime with the SUNW_MP_GUIDED_WEIGHT environment variable (“2.3 OpenMP
Environment Variables” on page 16). The current default, if not specified, assumes weight is
2.0; num_threads is the number of threads used to execute the loop.Choice of the weight
value affects the sizes of the initial and subsequent chunks of iterations assigned to threads
in loops, and has a direct affect on load balancing. Experimental results show that the default
weight of 2.0 works well generally. However some applications could benefit from a
different weight value.

■ Explicitly Threaded Programs
Programs that are explicitly threaded using POSIX or Solaris threads can contain OpenMP
directives or call routines that contain OpenMP directives.

■ Runtime Warnings
Setting the SUNW_MP_WARN environment variable (“2.3 OpenMP Environment Variables” on
page 16) enables runtime validity checking by the OpenMP runtime library.
For example, the following code will fall into an endless loop as threads wait at different
barriers, and must be terminated with a control-C from the terminal:

% cat bad1.c

#include <omp.h>

#include <stdio.h>

int

main(void)

{

3.1 Implementation-Defined Behaviors

Chapter 3 • Implementation-Defined Behaviors 27

omp_set_dynamic(0);

omp_set_num_threads(4);

#pragma omp parallel

{

int i = omp_get_thread_num();

if (i % 2) {

printf("At barrier 1.\n");

#pragma omp barrier

}

}

return 0;

}

% cc -xopenmp -xO3 bad1.c

% ./a.out run the program
At barrier 1.

At barrier 1.

program hung in endless loop
Control-C to terminate execution

But if we set SUNW_MP_WARN before execution, the runtime library will detect the problem:

% setenv SUNW_MP_WARN TRUE

% ./a.out

WARNING (libmtsk): Environment variable SUNW_MP_WARN is set to

TRUE. Runtime error checking will be enabled.

At barrier 1.

At barrier 1.

WARNING (libmtsk): Threads at barrier from different directives.

Thread at barrier from bad1.c:8.

Thread at barrier from bad1.c:13.

Possible Reasons:

Worksharing constructs not encountered by all threads in the

team in the same order.

Incorrect placement of barrier directives.

WARNING (libmtsk): Runtime shutting down while some parallel region

is still active.

The C and C++ compilers also provide a function that can be used to register a callback
function when errors are detected. When an error is detected, the registered callback
function is called and passed a pointer to an error message string as an argument.

int sunw_mp_register_warn(void (*func) (void *))

Access to the prototype for this function requires adding #include <sunw_mp_misc.h>

For example:

3.1 Implementation-Defined Behaviors

Sun Studio 12: OpenMP API User's Guide •28

% cat bad2.c

#include <omp.h>

#include <sunw_mp_misc.h>

#include <stdio.h>

void handle_warn(void *msg)

{

printf("handle_warn: %s\n", (char *)msg);

}

void set(int i)

{

static int k;

#pragma omp critical

{

k++;

}

#pragma omp barrier

}

int main(void)

{

int i, rc;

omp_set_dynamic(0);

omp_set_num_threads(4);

if (sunw_mp_register_warn(handle_warn) != 0) {

printf ("Installing callback failed\n");

}

#pragma omp parallel for

for (i = 0; i < 20; i++) {

set(i);

}

return 0;

}

% cc -xopenmp -xO3 bad2.c

% a.out

WARNING (libmtsk): Environment variable SUNW_MP_WARN is set to

TRUE. Runtime error checking will be enabled.

handle_warn: WARNING (libmtsk): at bad2.c:15. BARRIER is not

permitted in the dynamic extent of FOR / DO.

handle_warn() is installed as the callback function when an error is detected by the
OpenMP runtime library. The callback function in this example merely prints the error
message passed to it from the library, but could be used to trap certain errors.

3.1 Implementation-Defined Behaviors

Chapter 3 • Implementation-Defined Behaviors 29

■ Regarding Specific Constructs:
sections construct
The structured blocks in a sections construct are divided among the members of the team
executing the sections region, so that the threads execute an approximately equal number of
sections.
single construct
The structured block of a single construct will be executed by the thread that encounters
the single region first.
atomic construct
This implementation replaces all ATOMIC directives and pragmas by enclosing the target
statement in a CRITICAL construct.

■ Binding Thread Set for OpenMP Library Routines:
omp_set_num_threads routine
When called from within an explicit parallel region, the binding thread set for the
omp_set_num_threads region is the calling thread.
omp_get_max_threads routine
When called from within an explicit parallel region, the binding thread set for the
omp_get_max_threads region is the calling thread.
omp_set_dynamic routine
When called from within any explicit parallel region, the binding thread set for the
omp_set_dynamic region is the calling thread only.
omp_get_dynamic routine
When called from within an explicit parallel region, the binding thread set for the
omp_get_dynamic region is the calling thread only.
omp_set_nested routine
When called from within an explicit parallel region, the binding thread set for the
omp_set_nested region is the calling thread only.
omp_get_nested routine
When called from within an explicit parallel region, the binding thread set for the
omp_get_nested region is the calling thread only.

■ Fortran 95-Specific Issues:
threadprivate directive
If the conditions for values of data in the threadprivate objects of threads (other than the
initial thread) to persist between two consecutive active parallel regions do not all hold, then
the allocation status of an allocatable array in the second region may be "not currently
allocated".

3.1 Implementation-Defined Behaviors

Sun Studio 12: OpenMP API User's Guide •30

shared clause
Passing a shared variable to a non-intrinsic procedure may result in the value of the shared
variable being copied into temporary storage before the procedure reference, and back out
of the temporary storage into the actual argument storage after the procedure reference.
This copying into and out of temporary storage can occur only if conditions a, b, and c in
Section 2.8.3.2 of the OpenMP 2.5 Specification hold.
Include and module files
Both the include file omp_lib.h and the module file omp_lib are provided in this
implementation.
On Solaris, the OpenMP runtime library routines that take an argument are extended with a
generic interface so arguments of different Fortran KIND types can be accommodated.

3.1 Implementation-Defined Behaviors

Chapter 3 • Implementation-Defined Behaviors 31

32

Nested Parallelism

This chapter discusses the features of OpenMP nested parallelism.

4.1 The Execution Model
OpenMP uses a fork-join model of parallel execution. When a thread encounters a parallel
construct, the thread creates a team composed of itself and some additional (possibly zero)
number of threads. The encountering thread becomes the master of the new team. The other
threads of the team are called slave threads of the team. All team members execute the code
inside the parallel construct. When a thread finishes its work within the parallel construct, it
waits at the implicit barrier at the end of the parallel construct. When all team members have
arrived at the barrier, the threads can leave the barrier. The master thread continues execution
of user code beyond the end of the parallel construct, while the slave threads wait to be
summoned to join other teams.

OpenMP parallel regions can be nested inside each other. If nested parallelism is disabled, then
the new team created by a thread encountering a parallel construct inside a parallel region
consists only of the encountering thread. If nested parallelism is enabled, then the new team
may consist of more than one thread.

The OpenMP runtime library maintains a pool of threads that can be used as slave threads in
parallel regions. When a thread encounters a parallel construct and needs to create a team of
more than one thread, the thread will check the pool and grab idle threads from the pool,
making them slave threads of the team. The master thread might get fewer slave threads than it
needs if there is not a sufficient number of idle threads in the pool. When the team finishes
executing the parallel region, the slave threads return to the pool.

4C H A P T E R 4

33

4.2 Control of Nested Parallelism
Nested parallelism can be controlled at runtime by setting various environment variables prior
to execution of the program.

4.2.1 OMP_NESTED

Nested parallelism can be enabled or disabled by setting the OMP_NESTED environment variable
or calling omp_set_nested().

The following example has three levels of nested parallel constructs.

EXAMPLE 4–1 Nested Parallelism Example

#include <omp.h>

#include <stdio.h>

void report_num_threads(int level)

{

#pragma omp single

{

printf("Level %d: number of threads in the team - %d\n",

level, omp_get_num_threads());

}

}

int main()

{

omp_set_dynamic(0);

#pragma omp parallel num_threads(2)

{

report_num_threads(1);

#pragma omp parallel num_threads(2)

{

report_num_threads(2);

#pragma omp parallel num_threads(2)

{

report_num_threads(3);

}

}

}

return(0);

}

Compiling and running this program with nested parallelism enabled produces the following
(sorted) output:

4.2 Control of Nested Parallelism

Sun Studio 12: OpenMP API User's Guide •34

% setenv OMP_NESTED TRUE

% a.out

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Compare with running the same program but with nested parallelism disabled:

% setenv OMP_NESTED FALSE

% a.out

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 1

Level 3: number of threads in the team - 1

Level 2: number of threads in the team - 1

Level 3: number of threads in the team - 1

4.2.2 SUNW_MP_MAX_POOL_THREADS

The OpenMP runtime library maintains a pool of threads that can be used as slave threads in
parallel regions. Setting the SUNW_MP_MAX_POOL_THREADS environment variable controls the
number of threads in the pool. The default value is 1023.

The thread pool consists of only non-user threads that the runtime library creates. It does not
include the initial thread or any thread created explicitly by the user’s program. If this
environment variable is set to zero, the thread pool will be empty and all parallel regions will be
executed by one thread.

The following example shows that a parallel region can get fewer threads if there are not
sufficient threads in the pool.The code is the same as above. The number of threads needed for
all the parallel regions to be active at the same time is 8. The pool needs to contain at least 7
threads. If we set SUNW_MP_MAX_POOL_THREADS to 5, two of the four inner-most parallel regions
may not be able to get all the slave threads they ask for. One possible result is shown below.

% setenv OMP_NESTED TRUE

% setenv SUNW_MP_MAX_POOL_THREADS 5

% a.out

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 1

Level 3: number of threads in the team - 1

4.2 Control of Nested Parallelism

Chapter 4 • Nested Parallelism 35

4.2.3 SUNW_MP_MAX_NESTED_LEVELS

The environment variable SUNW_MP_MAX_NESTED_LEVELS controls the maximum depth of
nested active parallel regions that require more than one thread.

Any active parallel region that has an active nested depth greater than the value of this
environment variable will be executed by only one thread. A parallel region is considered active
if it it has no IF clause, or if it has an IF clause that evaluates to true. The default maximum
number of active nesting levels is 4.

The following code will create 4 levels of nested parallel regions. If
SUNW_MP_MAX_NESTED_LEVELS is set to 2, then nested parallel regions at nested depth of 3 and 4
are executed single-threaded.

#include <omp.h>

#include <stdio.h>

#define DEPTH 5

void report_num_threads(int level)

{

#pragma omp single

{

printf("Level %d: number of threads in the team - %d\n",

level, omp_get_num_threads());

}

}

void nested(int depth)

{

if (depth == DEPTH)

return;

#pragma omp parallel num_threads(2)

{

report_num_threads(depth);

nested(depth+1);

}

}

int main()

{

omp_set_dynamic(0);

omp_set_nested(1);

nested(1);

return(0);

}

Compiling and running this program with a maximum nesting level of 4 gives the following
possible output. (Actual results will depend on how the OS schedules threads.)

4.2 Control of Nested Parallelism

Sun Studio 12: OpenMP API User's Guide •36

% setenv SUNW_MP_MAX_NESTED_LEVELS 4

% a.out |sort

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 3: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Level 4: number of threads in the team - 2

Running with the nesting level set at 2 gives the following as a possible result:

% setenv SUNW_MP_MAX_NESTED_LEVELS 2

% a.out |sort

Level 1: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 2: number of threads in the team - 2

Level 3: number of threads in the team - 1

Level 3: number of threads in the team - 1

Level 3: number of threads in the team - 1

Level 3: number of threads in the team - 1

Level 4: number of threads in the team - 1

Level 4: number of threads in the team - 1

Level 4: number of threads in the team - 1

Level 4: number of threads in the team - 1

Again, these examples only show some possible results. Actual results will depend on how the
OS schedules threads.

4.3 Using OpenMP Library Routines Within Nested Parallel
Regions

Calls to the following OpenMP routines within nested parallel regions deserve some discussion.

- omp_set_num_threads()

- omp_get_max_threads()

- omp_set_dynamic()

- omp_get_dynamic()

4.3 Using OpenMP Library Routines Within Nested Parallel Regions

Chapter 4 • Nested Parallelism 37

- omp_set_nested()

- omp_get_nested()

The 'set' calls affect future parallel regions at the same or inner nesting levels encountered by the
calling thread only. They do not affect parallel regions encountered by other threads.

The 'get' calls return the values set by the calling thread. When a thread becomes the master of a
team executing a parallel region, all other members of the team inherit the values of the master
thread. When the master thread exits a nested parallel region and continues executing the
enclosing parallel region, the values for that thread revert to their values in the enclosing parallel
region just before executing the nested parallel region.

EXAMPLE 4–2 Calls to OpenMP Routines Within Parallel Regions

#include <stdio.h>

#include <omp.h>

int main()

{

omp_set_nested(1);

omp_set_dynamic(0);

#pragma omp parallel num_threads(2)

{

if (omp_get_thread_num() == 0)

omp_set_num_threads(4); /* line A */

else

omp_set_num_threads(6); /* line B */

/* The following statement will print out

*

* 0: 2 4

* 1: 2 6

*

* omp_get_num_threads() returns the number

* of the threads in the team, so it is

* the same for the two threads in the team.

*/

printf("%d: %d %d\n", omp_get_thread_num(),

omp_get_num_threads(),

omp_get_max_threads());

/* Two inner parallel regions will be created

* one with a team of 4 threads, and the other

* with a team of 6 threads.

*/

#pragma omp parallel

{

#pragma omp master

{

4.3 Using OpenMP Library Routines Within Nested Parallel Regions

Sun Studio 12: OpenMP API User's Guide •38

EXAMPLE 4–2 Calls to OpenMP Routines Within Parallel Regions (Continued)

/* The following statement will print out

*

* Inner: 4

* Inner: 6

*/

printf("Inner: %d\n", omp_get_num_threads());

}

omp_set_num_threads(7); /* line C */

}

/* Again two inner parallel regions will be created,

* one with a team of 4 threads, and the other

* with a team of 6 threads.

*

* The omp_set_num_threads(7) call at line C

* has no effect here, since it affects only

* parallel regions at the same or inner nesting

* level as line C.

*/

#pragma omp parallel

{

printf("count me.\n");

}

}

return(0);

}

Compiling and running this program gives the following as one possible result:

% a.out

0: 2 4

Inner: 4

1: 2 6

Inner: 6

count me.

count me.

count me.

count me.

count me.

count me.

count me.

count me.

count me.

count me.

4.3 Using OpenMP Library Routines Within Nested Parallel Regions

Chapter 4 • Nested Parallelism 39

4.4 Some Tips on Using Nested Parallelism
■ Nesting parallel regions provides an immediate way to allow more threads to participate in

the computation.
For example, suppose you have a program that contains two levels of parallelism and the
degree of parallelism at each level is 2. Also, suppose your system has four cpus and you
want use all four CPUs to speed up the execution of this program. Just parallelizing any one
level will use only two CPUs. You want to parallelize both levels.

■ Nesting parallel regions can easily create too many threads and oversubscribe the system.
Set SUNW_MP_MAX_POOL_THREADS and SUNW_MP_MAX_NESTED_LEVELS appropriately to limit
the number of threads in use and prevent runaway oversubscription.

■ Creating nested parallel regions adds overhead. If there is enough parallelism at the outer
level and the load is balanced, generally it will be more efficient to use all the threads at the
outer level of the computation than to create nested parallel regions at the inner levels.
For example, suppose you have a program that contains two levels of parallelism. The degree
of parallelism at the outer level is 4 and the load is balanced. You have a system with four
CPUs and want to use all four CPUs to speed up the execution of this program. Then, in
general, using all 4 threads for the outer level could yield better performance than using 2
threads for the outer parallel region, and using the other 2 threads as slave threads for the
inner parallel regions.

4.4 Some Tips on Using Nested Parallelism

Sun Studio 12: OpenMP API User's Guide •40

Automatic Scoping of Variables

Declaring the scope attributes of variables in an OpenMP parallel region is called scoping. In
general, if a variable is scoped as SHARED, all threads share a single copy of the variable. If a
variable is scoped as PRIVATE, each thread has its own copy of the variable. OpenMP has a rich
data environment. In addition to SHARED and PRIVATE, the scope of a variable can also be
declared FIRSTPRIVATE, LASTPRIVATE, REDUCTION, or THREADPRIVATE.

OpenMP requires the user to declare the scope of each variable used in a parallel region. This is
a tedious and error-prone process and many find this to be the hardest part of using OpenMP to
parallelize programs.

The Sun Studio C, C++, and Fortran 95 compilers provide an automatic scoping feature. The
compilers analyze the execution and synchronization pattern of a parallel region and determine
automatically what the scope of a variable should be, based on a set of scoping rules.

5.1 The Autoscoping Data Scope Clause
The autoscoping data scope clause is a Sun extension to the OpenMP specification. A user can
specify a variable to be autoscoped by using one of the following two clauses.

5.1.1 __autoClause
Syntax:

__auto(list-of-variables)

The __auto clause on a parallel construct directs the compiler to automatically determine the
scope of the named variables in the construct. (Note the two underscores before auto.)

The __auto clause can appear on a PARALLEL, PARALLEL DO/for, PARALLEL SECTIONS, or on a
Fortran 95 PARALLEL WORKSHARE directive.

5C H A P T E R 5

41

If a variable is specified on the __auto clause, then it cannot be specified in any other data scope
clause.

5.1.2 default(__auto)Clause
The default(__auto) clause on a parallel construct directs the compiler to automatically
determine the scope of all variables referenced in the construct that are not explicitly scoped in
any data scope clause.

The default(__auto) clause can appear on a PARALLEL, PARALLEL DO/for, PARALLEL SECTIONS,
or on a Fortran 95 PARALLEL WORKSHARE directive.

5.2 Scoping Rules
Under automatic scoping, the compiler applies the following rules to determine the scope of a
variable in a parallel region.

These rules do not apply to variables scoped implicitly by the OpenMP specification, such as
loop index variables of worksharing DO or FOR loops.

5.2.1 Scoping Rules For Scalar Variables
■ S1: If the use of the variable in the parallel region is free of data race conditions for the

threads in the team executing the region, then the variable is scoped SHARED.
■ S2: If in each thread executing the parallel region, the variable is always written before being

read by the same thread, then the variable is scoped PRIVATE. The variable is scoped as
LASTPRIVATE if it can be scoped PRIVATE and is read before it is written after the parallel
region, and the construct is either a PARALLEL DO or a PARALLEL SECTIONS.

■ S3: If the variable is used in a reduction operation that can be recognized by the compiler,
then the variable is scoped REDUCTION with that particular operation type.

5.2.2 Scoping Rules for Arrays
■ A1: If the use of the array in the parallel region is free of data race conditions for the threads

in the team executing the region, then the array is scoped as SHARED.

5.2 Scoping Rules

Sun Studio 12: OpenMP API User's Guide •42

5.3 General Comments About Autoscoping
When autoscoping a variable that does not have implicit scope, the compiler checks the use of
the variable against the above rules S1–S3 in the given order if it is a scalar, and against the
above rule A1 if it is an array. If a rule matches, the compiler will scope the variable according to
the matching rule. If a rule does not match, the compiler tries the next rule. If the compiler is
unable to find a match, the compiler gives up attempting to determine the scope of that variable
and it is scoped SHARED and the binding parallel region is serialized as if an IF (.FALSE.) or
if(0) clause were specified.

There are two reasons why autoscoping fails. One is that the use of the variable does not match
any of the rules. The other is that the source code is too complex for the compiler to do a
sufficient analysis. Function calls, complicated array subscripts, memory aliasing, and
user-implemented synchronizations are some typical causes. (See “5.5 Known Limitations of
the Current Implementation” on page 47.)

5.3.1 Autoscoping Rules for Fortran 95:
For Fortran, if a variable is autoscoped by an __auto or default(__auto) clause and the
variable has a predetermined scope according to the OpenMP Specification, then the compiler
will scope it according to that predetermined scope.

For Fortran, the following variables have predetermined scopes:

■ Variables and common blocks appearing in threadprivate directives are threadprivate.
■ The loop iteration variable in the do-loop of a do or parallel do construct is private in that

construct.
■ Variables used as loop iteration variables in sequential loops in a parallel construct are

private in the parallel construct.
■ Implied DO or FORALL indices are private.
■ Cray pointees inherit the sharing attribute of the storage with which their Cray Fortran

pointers are associated.

5.3.2 Autoscoping Rules for C/C++:
For C/C++, if a variable is autoscoped by an __auto or default(__auto) clause and the
variable has a predetermined scope according to the OpenMP Specification, then the compiler
will scope it according to that predetermined scope.

For C/C++, the following variables have predetermined scopes:

■ Variables appearing in threadprivate directives are threadprivate.

5.3 General Comments About Autoscoping

Chapter 5 • Automatic Scoping of Variables 43

■ Variables with automatic storage duration which are declared in a scope inside the construct
are private.

■ Variables with heap allocated storage are shared.
■ Static data members are shared.
■ The loop iteration variable in the for-loop of a for or parallel for construct is private in that

construct.
■ Variables with const-qualified type having no mutable member are shared.

Autoscoping in C and C++ applies only to basic data types: integer, floating point, and pointer.
If a user specifies a structure variable or class variable to be autoscoped, the compiler will scope
the variable as shared and the enclosing parallel region will be executed by a single thread.

5.4 Checking the Results of Autoscoping
Use compiler commentary to check autoscoping results and to see if any parallel regions are
serialized because autoscoping failed.

The compiler will produce an inline commentary when compiled with the -g debug option.
This generated commentary can be viewed with the er_src command, as shown below. (The
er_src command is provided as part of the Sun Studio software; for more information, see the
er_src(1) man page or the Sun Studio Performance Analyzer manual.)

A good place to start is to compile with the -xvpara option. A warning message will be printed
out if autoscoping fails, as shown below.

EXAMPLE 5–1 Compiling With -vpara

%cat t.f

INTEGER X(100), Y(100), I, T

C$OMP PARALLEL DO DEFAULT(__AUTO)

DO I=1, 100

T = Y(I)

CALL FOO(X)

X(I) = T*T

END DO

C$OMP END PARALLEL DO

END

%f95 -xopenmp -xO3 -vpara -c t.f

"t.f", line 2: Warning: parallel region will be executed

by a single thread because the autoscoping

of following variables failed - x

Compile with -vpara with f95, -xvpara with cc. (This option has not yet been implemented in
CC.)

5.4 Checking the Results of Autoscoping

Sun Studio 12: OpenMP API User's Guide •44

EXAMPLE 5–2 Using Compiler Commentary

%cat t.f

INTEGER X(100), Y(100), I, T

C$OMP PARALLEL DO DEFAULT(__AUTO)

DO I=1, 100

T = Y(I)

X(I) = T*T

END DO

C$OMP END PARALLEL DO

END

%f95 -xopenmp -xO3 -g -c t.f

%er_src t.o

Source file: ./t.f

Object file: ./ot.o

Load Object: ./t.o

1. INTEGER X(100), Y(100), I, T

Source OpenMP region below has tag R1

Variables autoscoped as SHARED in R1: x, y

Variables autoscoped as PRIVATE in R1: t, i

Private variables in R1: i, t

Shared variables in R1: y, x

2. C$OMP PARALLEL DO DEFAULT(__AUTO)

<Function: _$d1A2.MAIN_>

Source loop below has tag L1

L1 parallelized by explicit user directive

L1 parallel loop-body code placed in function _$d1A2.MAIN_ along with 0

inner loops

Copy in M-function of loop below has tag L2

L2 scheduled with steady-state cycle count = 3

L2 unrolled 4 times

L2 has 0 loads, 0 stores, 2 prefetches, 0 FPadds, 0 FPmuls, and 0 FPdivs

per iteration

L2 has 1 int-loads, 1 int-stores, 4 alu-ops, 1 muls, 0 int-divs and 1

shifts per iteration

3. DO I=1, 100

4. T = Y(I)

5. X(I) = T*T

6. END DO

7. C$OMP END PARALLEL DO

8. END

Next, a more complicated example to illustrate how the autoscoping rules work.

5.4 Checking the Results of Autoscoping

Chapter 5 • Automatic Scoping of Variables 45

EXAMPLE 5–3 A More Complicated Example

1. REAL FUNCTION FOO (N, X, Y)

2. INTEGER N, I

3. REAL X(*), Y(*)

4. REAL W, MM, M

5.

6. W = 0.0

7.

8. C$OMP PARALLEL DEFAULT(__AUTO)

9.

10. C$OMP SINGLE

11. M = 0.0

12. C$OMP END SINGLE

13.

14. MM = 0.0

15.

16. C$OMP DO

17. DO I = 1, N

18. T = X(I)

19. Y(I) = T

20. IF (MM .GT. T) THEN

21. W = W + T

22. MM = T

23. END IF

24. END DO

25. C$OMP END DO

26.

27. C$OMP CRITICAL

28. IF (MM .GT. M) THEN

29. M = MM

30. END IF

31. C$OMP END CRITICAL

32.

33. C$OMP END PARALLEL

34.

35. FOO = W - M

36.

37. RETURN

38. END

The function FOO() contains a parallel region, which contains a SINGLE construct, a
work-sharing DO construct and a CRITICAL construct. If we ignore all the OpenMP parallel
constructs, what the code in the parallel region does is:

1. Copy the value in array X to array Y
2. Find the maximum positive value in X, and store it in M

3. Accumulate the value of some elements of X into variable W.

5.4 Checking the Results of Autoscoping

Sun Studio 12: OpenMP API User's Guide •46

Let’s see how the compiler uses the above rules to find the appropriate scopes for the variables in
the parallel region.

The following variables are used in the parallel region, I, N, MM, T, W, M, X, and Y. The compiler will
determine the following.

■ Scalar I is the loop index of the work-sharing DO loop. The OpenMP specification mandates
that I be scoped PRIVATE.

■ Scalar N is only read in the parallel region and therefore will not cause data race, so it is
scoped as SHARED following rule S1.

■ Any thread executing the parallel region will execute statement 14, which sets the value of
scalar MM to 0.0. This write will cause data race, so rule S1 does not apply. The write happens
before any read of MM in the same thread, so MM is scoped as PRIVATE according to rule S2.

■ Similarly, scalar T is scoped as PRIVATE.
■ Scalar W is read and then written at statement 21, so rules S1 and S2 do not apply. The

addition operation is both associative and communicative, therefore, W is scoped as
REDUCTION(+) according to rule S3.

■ Scalar M is written in statement 11 which is inside a SINGLE construct. The implicit barrier at
the end of the SINGLE construct ensures that the write in statement 11 will not happen
concurrently with either the read in statement 28 or the write in statement 29, and the latter
two will not happen at the same time because both are inside the same CRITICAL construct.
No two threads can access M at the same time. Therefore, the writes and reads of M in the
parallel region do not cause a data race, and, following rule S1, M is scoped SHARED.

■ Array X is only read and not written in the region, so it is scoped as SHARED by rule A1.
■ The writes to array Y is distributed among the threads, and no two threads will write to the

same elements of Y. As there is no data race, Y is scoped SHARED according to rule A1.

5.5 Known Limitations of the Current Implementation
Here are the known limitations to autoscoping in the current Sun Studio Fortran 95 compiler.

■ Only OpenMP directives are recognized and used in the analysis. Calls to OpenMP runtime
routines are not recognized. For example, if a program uses OMP_SET_LOCK() and
OMP_UNSET_LOCK() to implement a critical section, the compiler is not able to detect the
existence of the critical section. Use CRITICAL and END CRITICAL directives if possible.

■ Only synchronizations specified by using OpenMP synchronization directives, such as
BARRIER and MASTER, are recognized and used in the analysis. User-implemented
synchronizations, such as busy-waiting, are not recognized.

■ Autoscoping is not supported when compiling with -xopenmp=noopt.

5.5 Known Limitations of the Current Implementation

Chapter 5 • Automatic Scoping of Variables 47

48

Performance Considerations

Once you have a correct, working OpenMP program, it is worth considering its overall
performance. There are some general techniques that you can utilize to improve the efficiency
and scalability of an OpenMP application, as well as techniques specific to the Sun platforms.
These are discussed briefly here.

For additional information, see Techniques for Optimizing Applications: High Performance
Computing, by Rajat Garg and Ilya Sharapov, which is available from
http://www.sun.com/books/catalog/garg.xml

Also, visit the Sun Developer portal for occasional articles and case studies regarding
performance analysis and optimization of OpenMP applications, at
http://developers.sun.com/prodtech/cc/.

6.1 Some General Recommendations
The following are some general techniques for improving performance of OpenMP
applications.

■ Minimize synchronization.
■ Avoid or minimize the use of BARRIER, CRITICAL sections, ORDERED regions, and locks.
■ Use the NOWAIT clause where possible to eliminate redundant or unnecessary barriers.

For example, there is always an implied barrier at the end of a parallel region. Adding
NOWAIT to a final DO in the region eliminates one redundant barrier.

■ Use named CRITICAL sections for fine-grained locking.
■ Use explicit FLUSH with care. Flushes can cause data cache restores to memory, and

subsequent data accesses may require reloads from memory, all of which decrease
efficiency.

By default, idle threads will be put to sleep after a certain time out period. It could be that the
default time out period is not sufficient for your application, causing the threads to go to

6C H A P T E R 6

49

http://www.sun.com/books/catalog/garg.xml
http://developers.sun.com/prodtech/cc/

sleep too soon or too late. The SUNW_MP_THR_IDLE environment variable can be used to
override the default time out period, even up to the point where the idle threads will never
be put to sleep and remain active all the time.

■ Parallelize at the highest level possible, such as outer DO/FOR loops. Enclose multiple loops in
one parallel region. In general, make parallel regions as large as possible to reduce
parallelization overhead. For example:

This construct is less efficient:

!$OMP PARALLEL

....

!$OMP DO

....

!$OMP END DO

....

!$OMP END PARALLEL

!$OMP PARALLEL

....

!$OMP DO

....

!$OMP END DO

....

!$OMP END PARALLEL

than this one:

!$OMP PARALLEL

....

!$OMP DO

....

!$OMP END DO

.....

!$OMP DO

....

!$OMP END DO

!$OMP END PARALLEL

■ Use PARALLEL DO/FOR instead of worksharing DO/FOR directives in parallel regions. The
PARALLEL DO/FOR is implemented more efficiently than a general parallel region containing
possibly several loops. For example:

This construct is less efficient:

!$OMP PARALLEL

6.1 Some General Recommendations

Sun Studio 12: OpenMP API User's Guide •50

!$OMP DO

.....

!$OMP END DO

!$OMP END PARALLEL

than this one:

!$OMP PARALLEL DO

....

!$OMP END PARALLEL

■ On Solaris systems, use SUNW_MP_PROCBIND to bind threads to processors. Processor
binding, when used along with static scheduling, benefits applications that exhibit a certain
data reuse pattern where data accessed by a thread in a parallel region will be in the local
cache from a previous invocation of a parallel region. See “2.4 Processor Binding on Solaris”
on page 19.

■ Use MASTER instead of SINGLE wherever possible.
■ The MASTER directive is implemented as an IF-statement with no implicit BARRIER :

IF(omp_get_thread_num() == 0) {...}
■ The SINGLE directive is implemented similar to other worksharing constructs. Keeping

track of which thread reached SINGLE first adds additional runtime overhead. There is an
implicit BARRIER if NOWAIT is not specified. It is less efficient.

Choose the appropriate loop scheduling.
■ STATIC causes no synchronization overhead and can maintain data locality when data

fits in cache. However, STATIC may lead to load imbalance.
■ DYNAMIC,GUIDED incurs a synchronization overhead to keep track of which chunks have

been assigned. And, while these schedules could lead to poor data locality, they can
improve load balancing. Experiment with different chunk sizes.

Use LASTPRIVATE with care, as it has the potential of high overhead.
■ Data needs to be copied from private to shared storage upon return from the parallel

construct.
■ The compiled code checks which thread executes the logically last iteration. This

imposes extra work at the end of each chunk in a parallel DO/FOR. The overhead adds up
if there are many chunks.

Use efficient thread-safe memory management.
■ Applications could be using malloc() and free() explicitly, or implicitly in the

compiler-generated code for dynamic/allocatable arrays, vectorized intrinsics, and so
on.

■ The thread-safe malloc() and free() in libc have a high synchronization overhead
caused by internal locking. Faster versions can be found in the libmtmalloc library. Link
with -lmtmalloc to use libmtmalloc.

6.1 Some General Recommendations

Chapter 6 • Performance Considerations 51

Small data cases may cause OpenMP parallel loops to underperform. Use the IF clause on
PARALLEL constructs to indicate that a loop should run parallel only in those cases where
some performance gain can be expected.

■ When possible, merge loops. For example:

merge two loops

!$omp parallel do

do i = ...

statements_1

end do

!$omp parallel do

do i = ...

statements_2

end do

into a single loop

!$omp parallel do

do i = ...

statements_1

statements_2

end do

■ Try nested parallelism if your application lacks scalability beyond a certain level. See “1.2
Special Conventions Used Here” on page 12 for more information about nested parallelism
in OpenMP.

6.2 False Sharing And How To Avoid It
Careless use of shared memory structures with OpenMP applications can result in poor
performance and limited scalability. Multiple processors updating adjacent shared data in
memory can result in excessive traffic on the multiprocessor interconnect and, in effect, cause
serialization of computations.

6.2 False Sharing And How To Avoid It

Sun Studio 12: OpenMP API User's Guide •52

6.2.1 What Is False Sharing?
Most high performance processors, such as UltraSPARC processors, insert a cache buffer
between slow memory and the high speed registers of the CPU. Accessing a memory location
causes a slice of actual memory (a cache line) containing the memory location requested to be
copied into the cache. Subsequent references to the same memory location or those around it
can probably be satisfied out of the cache until the system determines it is necessary to maintain
the coherency between cache and memory.

However, simultaneous updates of individual elements in the same cache line coming from
different processors invalidates entire cache lines, even though these updates are logically
independent of each other. Each update of an individual element of a cache line marks the line
as invalid. Other processors accessing a different element in the same line see the line marked as
invalid. They are forced to fetch a more recent copy of the line from memory or elsewhere, even
though the element accessed has not been modified. This is because cache coherency is
maintained on a cache-line basis, and not for individual elements. As a result there will be an
increase in interconnect traffic and overhead. Also, while the cache-line update is in progress,
access to the elements in the line is inhibited.

This situation is called false sharing. If this occurs frequently, performance and scalability of an
OpenMP application will suffer significantly.

False sharing degrades performance when all of the following conditions occur.
■ Shared data is modified by multiple processors.
■ Multiple processors update data within the same cache line.
■ This updating occurs very frequently (for example, in a tight loop).

Note that shared data that is read-only in a loop does not lead to false sharing.

6.2.2 Reducing False Sharing
Careful analysis of those parallel loops that play a major part in the execution of an application
can reveal performance scalability problems caused by false sharing. In general, false sharing
can be reduced by
■ making use of private data as much as possible;
■ utilizing the compiler’s optimization features to eliminate memory loads and stores.

In specific cases, the impact of false sharing may be less visible when dealing with larger
problem sizes, as there might be less sharing.

Techniques for tackling false sharing are very much dependent on the particular application. In
some cases, a change in the way the data is allocated can reduce false sharing. In other cases,
changing the mapping of iterations to threads, giving each thread more work per chunk (by
changing the chunksize value) can also lead to a reduction in false sharing.

6.2 False Sharing And How To Avoid It

Chapter 6 • Performance Considerations 53

6.3 Solaris OS Tuning Features
Starting with the Solaris 9 release, the operating system provides scalability and high
performance for the SunFireTM systems. New features introduced with Solaris 9 OS that improve
the performance of OpenMP programs without hardware upgrades are Memory Placement
Optimizations (MPO) and Multiple Page Size Support (MPSS), among others.

MPO allows the OS to allocate pages close to the processors that access those pages. SunFire
E20K, and SunFire E25K systems have different memory latencies within the same UniBoardTM

versus between different UniBoards. The default MPO policy, called first-touch, allocates
memory on the UniBoard containing the processor that first touches the memory. The
first-touch policy can greatly improve the performance of applications where data accesses are
made mostly to the memory local to each processor with first-touch placement. Compared to a
random memory placement policy where the memory is evenly distributed throughout the
system, the memory latencies for applications can be lowered and the bandwidth increased,
leading to higher performance.

The MPSS feature is supported as of the Solaris 9 OS release, and allows a program to use
different page sizes for different regions of virtual memory. The default Solaris page size is
relatively small (8KB on UltraSPARC processors and 4KB on AMD64 Opteron processors).
Applications that suffer from too many TLB misses may experience a performance boost by
using a larger page size.

TLB misses can be measured using the Sun Performance Analyzer.

The default page size on a specific platform can be obtained with the Solaris OS command:
/usr/bin/pagesize . The -a option on this command lists all the supported page sizes. (See the
pagesize(1) man page for details.)

There are three ways to change the default page size for an application:

■ Use the Solaris OS command ppgsz(1)
■ Compile the application with the -xpagesize, -xpagesize_heap, and -xpagesize_stack

options. (See the compiler man pages for details.)
■ Use MPSS specific environment variables. See the mpss.so.1(1) man page for details.

6.3 Solaris OS Tuning Features

Sun Studio 12: OpenMP API User's Guide •54

Placement of Clauses on Directives

The following table relates clauses to directives and pragmas:

TABLE A–1 Pragmas Where Clauses Can Appear

Clause/Pragma PARALLEL DO/for SECTIONS SINGLE

PARALLEL

DO/for

PARALLEL

SECTIONS

PARALLEL

WORKSHARE

IF Yes Yes Yes Yes

PRIVATE Yes Yes Yes Yes Yes Yes Yes

SHARED Yes Yes Yes Yes

FIRSTPRIVATE Yes Yes Yes Yes Yes Yes Yes

LASTPRIVATE Yes Yes Yes Yes

DEFAULT Yes Yes Yes Yes

REDUCTION Yes Yes Yes Yes Yes Yes

COPYIN Yes Yes Yes Yes

COPYPRIVATE Yes (1)

ORDERED Yes Yes

SCHEDULE Yes Yes

NOWAIT Yes (2) Yes (2) Yes (2)

NUM_THREADS Yes Yes Yes Yes

__AUTO Yes Yes Yes Yes

1. Fortran only: COPYPRIVATE can appear on the END SINGLE directive.

2. For Fortran, a NOWAIT modifier can only appear on the END DO, END SECTIONS, END SINGLE, or
END WORKSHARE directives.

AA P P E N D I X A

55

3. Only Fortran supports WORKSHARE and PARALLEL WORKSHARE.

Placement of Clauses on Directives

Sun Studio 12: OpenMP API User's Guide •56

Converting to OpenMP

This chapter gives guidelines for converting legacy programs using Sun or Cray directives and
pragmas to OpenMP.

Note – Legacy Sun and Cray parallelization directives are now deprecated and no longer
supported by Sun Studio compilers.

B.1 Converting Legacy Fortran Directives
Legacy Fortran programs use either Sun or Cray style parallelization directives. A description of
these directives can be found in the chapter Parallelization in the Fortran Programming Guide.

B.1.1 Converting Sun-Style Fortran Directives
The following tables give OpenMP near equivalents to Sun parallelization directives and their
subclauses. These are only suggestions.

TABLE B–1 Converting Sun Parallelization Directives to OpenMP

Sun Directive Equivalent OpenMP Directive

C$PAR DOALL [qualifiers] !$omp parallel do [qualifiers]

C$PAR DOSERIAL No exact equivalent. You can use:

!$omp master

loop

!$omp end master

BA P P E N D I X B

57

TABLE B–1 Converting Sun Parallelization Directives to OpenMP (Continued)
Sun Directive Equivalent OpenMP Directive

C$PAR DOSERIAL* No exact equivalent. You can use:

!$omp master

loopnest

!$omp end master

C$PAR TASKCOMMON block[,...] !$omp threadprivate (/block/[,...])

The DOALL directive can take the following optional qualifier clauses.

TABLE B–2 DOALLQualifier Clauses and OpenMP Equivalent Clauses

Sun DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

PRIVATE(v1,v2,...) private(v1,v2,...)

SHARED(v1,v2,...) shared(v1,v2,...)

MAXCPUS(n) num_threads(n). No exact equivalent.

READONLY(v1,v2,...) No exact equivalent. You can achieve the same effect by using
firstprivate(v1,v2,...).

STOREBACK(v1,v2,...) lastprivate(v1,v2,...).

SAVELAST No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

REDUCTION(v1,v2,...) reduction(operator:v1,v2,...) Must supply the reduction operator as well
as the list of variables.

SCHEDTYPE(spec) schedule(spec) (See Table B–3)

The SCHEDTYPE(spec) clause accepts the following scheduling specifications.

TABLE B–3 SCHEDTYPE Scheduling and OpenMP scheduleEquivalents

SCHEDTYPE(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

SCHEDTYPE(SELF(chunksize)) schedule(dynamic,chunksize)

Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No exact equivalent.

B.1 Converting Legacy Fortran Directives

Sun Studio 12: OpenMP API User's Guide •58

TABLE B–3 SCHEDTYPE Scheduling and OpenMP scheduleEquivalents (Continued)
SCHEDTYPE(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(GSS(m)) schedule(guided, m)

Default m is 1.

B.1.1.1 Issues Between Sun-Style Fortran Directives and OpenMP
■ Scoping of private variables must be declared explicitly with OpenMP. With Sun directives,

the compiler uses its own default scoping rules for variables not explicitly scoped in a
PRIVATE or SHARED clause: all scalars are treated as PRIVATE, and all array references are
SHARED. With OpenMP, the default data scope is SHARED unless a DEFAULT(PRIVATE) clause
appears on the PARALLEL DO directive. A DEFAULT(NONE) clause causes the compiler to flag
variables not scoped explicitly. However, see “4.4 Some Tips on Using Nested Parallelism”
on page 40 for information on autoscoping in Fortran.

■ Since there is no DOSERIAL directive, mixing automatic and explicit OpenMP parallelization
may have different effects: some loops may be automatically parallelized that would not have
been with Sun directives.

■ OpenMP provides a richer parallelism model by providing parallel regions and parallel
sections. It could be possible to get better performance by redesigning the parallelism
strategies of a program that uses Sun directives to take advantage of these features of
OpenMP.

B.1.2 Converting Cray-Style Fortran Directives
Cray-style Fortran parallelization directives are identical to Sun-style except that the sentinel
that identifies these directives is !MIC$. Also, the set of qualifier clauses on the !MIC$ DOALL is
different.

TABLE B–4 OpenMP Equivalents for Cray-Style DOALLQualifier Clauses

Cray DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

SHARED(v1,v2,...) SHARED(v1,v2,...)

PRIVATE(v1,v2,...) PRIVATE(v1,v2,...)

AUTOSCOPE No equivalent. Scoping must be explicit, or with the DEFAULT clause, or with
the __AUTO clause

SAVELAST No exact equivalent. You can achieve the same effect by using lastprivate.

MAXCPUS(n) num_threads(n). No exact equivalent.

B.1 Converting Legacy Fortran Directives

Appendix B • Converting to OpenMP 59

TABLE B–4 OpenMP Equivalents for Cray-Style DOALLQualifier Clauses (Continued)
Cray DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

GUIDED schedule(guided, m)

Default m is 1.

SINGLE schedule(dynamic,1)

CHUNKSIZE(n) schedule(dynamic,n)

NUMCHUNKS(m) schedule(dynamic,n/m) where n is the number of iterations

B.1.2.1 Issues Between Cray-Style Fortran Directives and OpenMP Directives
The differences are the same as for Sun-style directives, except that there is no equivalent for the
Cray AUTOSCOPE.

B.2 Converting Legacy C Pragmas
The C compiler accepts legacy pragmas for explicit parallelization. These are described in the C
User’s Guide. As with the Fortran directives, these are only suggestions.

The legacy parallelization pragmas are:

TABLE B–5 Converting Legacy C Parallelization Pragmas to OpenMP

Legacy C Pragma Equivalent OpenMP Pragma

#pragma MP taskloop [clauses] #pragma omp parallel for [clauses]

#pragma MP serial_loop No exact equivalent. You can use

#pragma omp master

loop

#pragma MP serial_loop_nested No exact equivalent. You can use

#pragma omp master

loopnest

The taskloop pragma can take on one or more of the following optional clauses.

B.2 Converting Legacy C Pragmas

Sun Studio 12: OpenMP API User's Guide •60

TABLE B–6 taskloopOptional Clauses and OpenMP Equivalents

taskloopClause OpenMP parallel for Equivalent Clause

maxcpus(n) No exact equivalent. Use num_threads(n)

private(v1,v2,...) private(v1,v2,...)

shared(v1,v2,...) shared(v1,v2,...)

readonly(v1,v2,...) No exact equivalent. You can achieve the same effect by using
firstprivate(v1,v2,...).

storeback(v1,v2,...) You can achieve the same effect by using lastprivate(v1,v2,...).

savelast No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

reduction(v1,v2,...) reduction(operator:v1,v2,...). Must supply the reduction operator as
well as the list of variables.

schedtype(spec) schedule(spec) (See Table B–7)

The schedtype(spec) clause accepts the following scheduling specifications.

TABLE B–7 SCHEDTYPE Scheduling and OpenMP scheduleEquivalents

schedtype(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

SCHEDTYPE(SELF(chunksize)) schedule(dynamic,chunksize)

Note: Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No exact equivalent.

SCHEDTYPE(GSS(m)) schedule(guided, m)

Default m is 1.

B.2.1 Issues Between Legacy C Pragmas and OpenMP
■ OpenMP scopes variables declared within a parallel construct as private. A default(none)

clause on a #pragma omp parallel for directive causes the compiler to flag variables not
scoped explicitly.

■ Since there is no serial_loop directive, mixing automatic and explicit OpenMP
parallelization may have different effects: some loops may be automatically parallelized that
would not have been with legacy C directives.

B.2 Converting Legacy C Pragmas

Appendix B • Converting to OpenMP 61

■ Because OpenMP provides a richer parallelism model, it is often possible to get better
performance by redesigning the parallelism strategies of a program that uses legacy C
directives to take advantage of these features.

B.2 Converting Legacy C Pragmas

Sun Studio 12: OpenMP API User's Guide •62

Index

A
accessible documentation, 7-8
__auto, 41
automatic scoping, 41
autoscoping rules, 43

C
cache line, 52
compiling for OpenMP, 13
converting to OpenMP

Cray-style Fortran directives, 59
legacy C pragmas, 60
Sun-style Fortran directives, 57

D
directive, See pragma
directives, validation (Fortran 95), 15
documentation, accessing, 7-9
documentation index, 7
dynamic thread adjustment, 16
dynamic threads, 26

E
environment variables, 16
explicitly threaded programs, 27

F
false sharing, 52

G
guided scheduling, 19
guided weight, 27

I
idle threads, 18
implementation, 25

M
memory placement optimization (MPO), 54

N
nested parallelism, 16, 26, 33, 34
number of threads, 26

OMP_NUM_THREADS, 16

O
OMP_DYNAMIC, 16
OMP_NESTED, 16, 34
OMP_NUM_THREADS, 16

63

OMP_SCHEDULE, 16
OpenMP API specification, 11

P
parallelism, nested, 33
performance, 49
platforms, supported, 6
pragma, See directive

R
runtime checking, 27

S
scalability, 52
scheduling, 27

OMP_SCHEDULE, 16
scheduling clauses, SCHEDULE, 27
scoping of variables

automatic, 41
autoscoping limitations, 47
compiler commentary, 44
rules, 42

shell prompts, 6
SLEEP, 18
Solaris OS tuning, 54
SPIN, 18
stack size, 19, 23
stacks, 23
STACKSIZE, 19
-stackvar, 23
SUNW_MP_GUIDED_WEIGHT, 19, 27
SUNW_MP_MAX_NESTED_LEVELS, 19, 36
SUNW_MP_MAX_POOL_THREADS, 18, 35
sunw_mp_misc.h, 28
SUNW_MP_PROCBIND, 18
sunw_mp_register_warn(), 28
SUNW_MP_THR_IDLE, 18
SUNW_MP_WARN, 17, 27
supported platforms, 6

T
thread stack size, 19
typographic conventions, 5-6

V
validation of directives (Fortran 95), 15

W
warning messages, 17
weighting factor, 19, 27

X
-XlistMP, 15
-xopenmp, 13

Index

Sun Studio 12: OpenMP API User's Guide •64

	Sun Studio 12: OpenMP API User's Guide
	Preface
	Typographic Conventions
	Shell Prompts
	Supported Platforms
	Accessing Sun Studio Documentation
	Documentation in Accessible Formats
	Related Sun Studio Documentation

	Accessing Related Solaris Documentation
	Resources for Developers
	Contacting Sun Technical Support
	Sending Your Comments

	Introducing the OpenMP API
	1.1 Where to Find the OpenMP Specifications
	1.2 Special Conventions Used Here

	Compiling and Running OpenMP Programs
	2.1 Compiler Options To Use
	2.2 Fortran 95 OpenMP Validation
	2.3 OpenMP Environment Variables
	2.4 Processor Binding on Solaris
	2.5 Stacks and Stack Sizes
	2.6 Checking OpenMP Programs With the Thread Analyzer

	Implementation-Defined Behaviors
	3.1 Implementation-Defined Behaviors

	Nested Parallelism
	4.1 The Execution Model
	4.2 Control of Nested Parallelism
	4.2.1 OMP_NESTED
	4.2.2 SUNW_MP_MAX_POOL_THREADS
	4.2.3 SUNW_MP_MAX_NESTED_LEVELS

	4.3 Using OpenMP Library Routines Within Nested Parallel Regions
	4.4 Some Tips on Using Nested Parallelism

	Automatic Scoping of Variables
	5.1 The Autoscoping Data Scope Clause
	5.1.1 __auto Clause
	5.1.2 default(__auto) Clause

	5.2 Scoping Rules
	5.2.1 Scoping Rules For Scalar Variables
	5.2.2 Scoping Rules for Arrays

	5.3 General Comments About Autoscoping
	5.3.1 Autoscoping Rules for Fortran 95:
	5.3.2 Autoscoping Rules for C/C++:

	5.4 Checking the Results of Autoscoping
	5.5 Known Limitations of the Current Implementation

	Performance Considerations
	6.1 Some General Recommendations
	6.2 False Sharing And How To Avoid It
	6.2.1 What Is False Sharing?
	6.2.2 Reducing False Sharing

	6.3 Solaris OS Tuning Features

	Placement of Clauses on Directives
	Converting to OpenMP
	B.1 Converting Legacy Fortran Directives
	B.1.1 Converting Sun-Style Fortran Directives
	B.1.1.1 Issues Between Sun-Style Fortran Directives and OpenMP

	B.1.2 Converting Cray-Style Fortran Directives
	B.1.2.1 Issues Between Cray-Style Fortran Directives and OpenMP Directives

	B.2 Converting Legacy C Pragmas
	B.2.1 Issues Between Legacy C Pragmas and OpenMP

	Index

